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We present a technique to automatically animate a still portrait, making
it possible for the subject in the photo to come to life and express various
emotions. We use a driving video (of a different subject) and develop means
to transfer the expressiveness of the subject in the driving video to the target
portrait. In contrast to previous work that requires an input video of the
target face to reenact a facial performance, our technique uses only a single
target image. We animate the target image through 2D warps that imitate the
facial transformations in the driving video. As warps alone do not carry the
full expressiveness of the face, we add fine-scale dynamic details which are
commonly associated with facial expressions such as creases and wrinkles.
Furthermore, we hallucinate regions that are hidden in the input target face,
most notably in the inner mouth. Our technique gives rise to reactive profiles,
where people in still images can automatically interact with their viewers.
We demonstrate our technique operating on numerous still portraits from
the internet.

CCS Concepts: • Computing methodologies → Animation;

Additional Key Words and Phrases: face animation, facial reenactment

ACM Reference format:
Hadar Averbuch-Elor, Daniel Cohen-Or, Johannes Kopf, and Michael F.
Cohen. 2017. Bringing Portraits to Life. ACM Trans. Graph. 36, 4, Article 196
(November 2017), 13 pages.
https://doi.org/10.1145/3130800.3130818

1 INTRODUCTION
Few objects convey as large a range of depth and meaning as the
human face. Facial expressions in humans convey not just major
emotions, but through subtle variations, a rather nuanced view into
the emotional state of a person, for example, a sad smile, blushing,
etc. (e.g., much has been said about the smile of Mona Lisa).
In this work, we are interested in animating faces in human

portraits, and in particular controlling their expressions. To avoid
crossing into the “uncanny valley”, previous facial animation tech-
niques usually assume the availability of a video of the target face,
which exhibits variation in both pose and expression [Dale et al.
2011; Garrido et al. 2014; Thies et al. 2016]. An input video, or even
an image collection of the target face (e.g., [Cao et al. 2016]), allows
for an accurate 3D face reconstruction, over which face textures are
mapped and manipulated.

In contrast to previous work we use as input only a single image
of a target face to animate it. This makes our method more widely
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Fig. 1. Given a single image (top row), our method automatically generates
photo-realistic videos that express various emotions. We use driving videos
of a different subject and mimic the expressiveness of the subject in the
driving video. Representative frames from the videos are displayed above.
©Unsplash photographers Lauren Ferstl, Brooke Cagle, Guillaume Bolduc, Ilya Yakover,
Drew Graham and Ryan Holloway.

applicable, to the near endless supply of portrait or selfie images
on the internet. We animate the single target face image from a
driving video, allowing the target image to come alive and mimic
the expressiveness of the subject in the driving video. While most
previous work restrict themselves to only the face region, within
limits, our method animates the full head and upper body.

We animate the target image by a series of warps that imitate the
facial transformations in the driving video. Like in previous works
(e.g., [Fried et al. 2016; Leyvand et al. 2008; Yang et al. 2011]), we
manipulate the face by lightweight 2D warps. We are able to create
moderate head movement while maintaining the high realism of
the input 2D image without converting and projecting the image to
3D.
In our work, we establish a correspondence between the target

image and driving video frames by utilizing the effectiveness of
facial landmarks detection and tracking techniques, and expanding
these facial correspondences to span the entire image and over time.
As warps alone do not carry the full expression of the face, we add
fine-scale details such as wrinkles and creases that are commonly
associated with facial expressions, and hallucinate regions that are
hidden in the input target face, most notably in the inner mouth.
Figure 1 shows results of expressions which were transferred to a
single target image on the left. (The reader is encouraged to see the
videos included in the supplementary material).
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As our results illustrate, our technique enables bringing a still
portrait to life, making it seem as though the person is breathing,
smiling, frowning, or for that matter any other animation that one
wants to drive with.We apply our technique on highly varying facial
images, including internet selfies, old portraits and facial avatars.
Additionally, we demonstrate our results in the context of reactive
profiles – a novel application which resembles the moving portraits
from Harry Potter’s magical world, where people in photographs
move, wave, etc. By discovering portions of driving videos which
contain a number of different emotions, our technique provides the
means for the target image to react to stimulii. Our main contribu-
tions are:

• The ability to bring life to a single still portrait through 2D
warps and generate a video sequence which maintains the
realism of the input image.

• A method to continuously transfer fine-scale details includ-
ing wrinkles and creases, while avoiding outlier wrinkles
that are caused by cast shadows or misalignment between
the warped video frames.

• A method to seamlessly transfer hidden regions, e.g., the
mouth interior, when necessary.

• A new reactive profile application, enabled from a single
input image.

2 RELATED WORK
Our method takes a single target image of a neutral face in frontal
pose and generates a video that expresses various emotions. Previous
works [Blanz and Vetter 1999; Breuer et al. 2008] addressed face
manipulation from a single image, but do not focus on generating
an animated video. Other works [Thies et al. 2016; Vlasic et al. 2005]
manipulate or reenact a facial performance, but these assume the
availability of a video of the target face. Inwhat follows, we elaborate
on the most closely related works.

Most prior works require more than a single target image of a face
to automatically manipulate it. A video-to-image facial retargeting
application was previously introduced in Cao et al. [2014], but their
method is not automatic and requires some user interaction. Facial
editing using deep networks was introduced in Yeh et al. [2016]. The
method of Liu et al. [2001] enables transferring the fine-scale details
of one person’s changed expression to a neutral target image. In
our work, we extend their technique to accommodate more general
image pairs and a stable video output. Recently, Fried et al. [2016]
presented a technique to manipulate the camera viewpoint from a
single input image. Their method enables modifying the apparent
relative pose and the distance between the camera and the subject.
Other works, such as [Hassner et al. 2015], specifically address the
problem of face frontalization, as it is extremely beneficial for facial
recognition [Ding and Tao 2016].

In their seminal work, Blanz and Vetter [1999] fit a 3D morphable
model to a single input image, texture-map a face image onto a
3D mesh, and parametrically change its pose and appearance. In a
follow up work, Blanz et al. [2003] enabled animating a single image,
but focus on the mouth region. Later works, e.g. [Breuer et al. 2008],
extended the 3D morphable model technique to allow for an auto-
matic reconstruction pipeline. However, as noted by Piotraschke

and Blanz [2016], when only a single image is provided, plausible
reconstructions often require a manual initialization. Furthermore,
the realism of the manipulated faces using these techniques in gen-
eral is often lacking, as they cannot extract fine details since they
are not spanned by the principal components. To maintain the re-
alism of the input image, one should avoid the projection of the
image onto a 3D model. This claim holds for faces as well as for
the whole body (e.g., [Zhou et al. 2010]). The commercial system
FaceApp 1 can generate a smiling still image from a neutral input
image. In the supplementary material, we demonstrate some output
stills generated by their system.

Facial manipulation techniques that require an input video of the
target face are by far more common. Vlasic et al. [2005] edit the 3D
mesh of the target face according to the expression parameters. Li
et al. [2012] utilize a facial performance database of the target face.
Dale et al. [2011] use a 3D morphable model for face reeanactment
using a source and target video. Garrido et al. [2014] present an
automatic method for face replacement in video, but unlike Dale
et al., they only replace the actor’s facial region, and keep the hair
and the rest of the head and the upper body of the source video.
The problem of face swapping was also introduced in the context
of an input target image, for example in [Korshunova et al. 2016].
Recently, Thies et al. [2016] presented a real-time facial reenactment
of a target video sequence. Unlike our animation of a single static
image, their work assumes that the target video contains rich and
sufficient data to synthesize a plausible reenactment. In our work,
we do not reenact the facial expression only, but also the respective
head motion. The technique of Kemelmacher et al. [2010] is also
related to ours, but more in the context of image retrieval. Other
video techniques, such as [Garrido et al. 2015], focus specifically on
transferring lip motion to an existing target video.
There are other works that address facial expression editing in

video, but do not explicitly follow another performer. Some exam-
ples include [Kuster et al. 2012] who aim at retargeting the gaze
of a streaming video and [Ganin et al. 2016] who manipulate the
gaze of a single image. Some works focus, for example, on synthe-
sizing a realistic inside of the mouth (e.g., [Kawai et al. 2013, 2014]).
Bai et al. [2013] edit a facial video performance in an expression-
preserving manner, removing undesired large-scale motion. Yang et
al. [2012] magnify (or suppress) the provided expression in a target
video. In contrast, we create new photo-realistic expressions which
are significantly different from the input image. Recently, Masi et
al. [2016] addressed the problem of data augmentation by adding
expression variation in the form of a single local expression control
(closing the mouth). This expression manipulation helps in aug-
menting training data, without necessarily generating a plausible
realistic expression.

Some previous works address transferring expressions from a user
to a facial avatar (e.g., [Saragih et al. 2011]) or from one facial avatar
to another (e.g., [Chuang and Bregler 2005]). Although our method
enables animating non photo-realistic faces, the main challenge in
our work is to maintain a high degree of realism of a human face.
Unlike animating and manipulating the full body (e.g., [Hornung
et al. 2007; Zhou et al. 2010]), in facial animation, we, as humans,

1https://www.faceapp.com
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Input Feature correspondence Animating a single target frame Output

Fig. 2. An overview of our method. Given an input target image and a driving video, we extract and track facial and non-facial features in the driving video
(colored in red and yellow, respectively) and compute correspondences to the target image. To generate the animated target frames, we perform a 2D warping
to generate a coarse target frame, followed by a transfer of hidden regions (i.e., the mouth interior) and fine-scale details. ©Unsplash photographer Atikh Bana.

are extremely sensitive to the finest nuances. To do so, we merely
utilize 2D tracked features in the driving videos, bypassing the need
for a precise tracking procedure such as the ones presented in Cao
et al. [2015] or Saito et al. [2016].

3 OVERVIEW
Our method uses as input a single image of a target face in neutral-
frontal pose, as well as a video of a different face that drives the
animation of the target image. An overview of our method is illus-
trated in Figure 2. We animate the target image through a series
of 2D warps that imitate the facial transformations in the driving
video. These warps are controlled by a set of sparse correspondences
between the target face and the face in the driving video frames.
Many methods have been proposed for detecting fiducial points on
faces at fixed standard locations (eyes, mouth corners, etc., see red
points in Figure 2). However, to bring the full head of the target
image to life we need to allow the entire head to move and change
its pose. Thus, we track additional points outside the face region to
help guide the overall head.

Moreover, geometric warps alone do not encode the full range of
changes a face undergoes when the expression changes. In addition
there are many fine-scale changes, such as self-shadowing in wrin-
kles and creases that are necessary to convey the full expression of
the face in the driving video. Furthermore, by assuming a neutral
target face, we implicitly assume a closed mouth of the target face.
Therefore, the inner mouth of the target face is hidden, and thus
we need to hallucinate the appearance in this region if the mouth
opens in the driving video.

To meet these requirements, we develop the following technical
solutions:

Correspondence expansion. We utilize the high-fidelity of facial
landmarks detection and tracking, and expand the correspondences
in the facial region to correspondences that span the entire image
and over time. These additional landmarks are illustrated in yellow
in Figure 2. The augmented set of corresponding points allow track-
ing and changing the pose of the target head to follow and imitate
the one in the driving video (see Section 4).

Confidence-aware warping. We extrapolate the sparse set of cor-
respondences to a dense vector field over the entire image. See the
illustration of the warped target at frame t . We distinguish between
the highly-confident facial region and the rest of the image, where
we have no guarantees on the quality or even the quantity of the
corresponding points, and smooth the vector field accordingly (see
Section 4).

Hidden region transfer. When needed (i.e., themouth is open in the
driving video), we transfer the mouth interior to the animated target
frame. The composite retains as many details as possible from the
target image as only the mouth interior, and not the lips themselves,
are transferred to the animated frame. Note the hallucinated teeth
of the animated target face at frame t (see Section 5).

Detection of inlier wrinkles. To generate a realistic expression,
we transfer creases and wrinkles in the facial region. We detect
and avoid illumination changes that are caused by cast shadows or
misalignments between the warped video frames (see Section 6).

4 COARSE TARGET VIDEO SYNTHESIS
Our input consists of a target image, t∗, and a driving video S ,
which contains a series of frames si . Note that our notation assigns
lowercase letters to images and frames and uppercase letters to
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(a) Input target image (b) No smoothing (c) Constant smoothing (d) Our warped frame (e) Our final frame

Fig. 3. Confidence-aware warping. (a) The target image to be warped, with the triangulation mesh on top of it. (b) Without smoothing, discontinuities can be
observed in the non-facial region, e.g., in the region inside the yellow rectangle. (c) A constant blur kernel diminishes the animated facial expression. As can
be seen inside the blue rectangle, the mouth is no longer smiling. (d) Our confidence-aware blurring kernel keeps the facial details and smooths out the
discontinuities. (e) The animated frame on the right is our final result (after transferring hidden regions and fine-scale details). ©Unsplash photographer Jimmy Bay.

videos. Our goal is to synthesize a new video T , constructed from
frames ti , that follows the motion of S , but maintains the identity
from t∗. We assume that t∗ is an image of a neutral face and that
there is a frame, s∗, in S , with a neutral expression.
Each frame in the synthesized sequence ti ∈ T corresponds to a

frame in the driving video si ∈ S . To ease notations, we assume the
neutral frame of the driving video, s∗, to be the first frame (s0), but
this frame can be selected as well. Each frame ti ∈ T is generated
by warping t∗ according to a sparse set of control points pti , which
mimic the offsets of the corresponding set of control points pSi
defined in the driving video.
Since the faces in t∗ and s0 are not aligned, we first compute an

aligning transformation, ϕ, between t∗ and s∗ that compensates
for the misalignment. For each frame, ti ∈ T , t∗ is warped by any
changes in the positions of the points in the driving video, (pSi −pS0 )
after the transformation, ϕ, that aligns the neutral frames. Putting
it all together:

pti = pt0 + ϕ ·
(
pSi − pS0

)
(1)

The alignment and subsequent offsets are computed over a set of
control points. The control points that we use consist of two sets,
illustrated in Figure 2 in red and yellow points. The red points are
the fiducial points on the faces. Various methods have been proposed
for detecting fiducial points on faces. We use the implementation
available in [King 2009] which automatically detects and tracks 68
facial landmarks. This provides us with 68 corresponding landmarks
which are located in the chin, mouth, nose, eye and eyebrow regions.

The aligning transformation ϕ is defined once by estimating a
similarity transformation between the target image t∗ and the neu-
tral frame s∗. We estimate this transformation using least-squares by
approximating a rotation and scale between the landmarks located
in the eye regions and the tip of the nose.
To modify the entire image, and not just the facial region, some

correspondences outside the facial region are required. However,
there are no consistent features away from the facial region in both

the target and driving video. Thus, a robust correspondence tech-
nique cannot be reliably obtained. We therefore instead track points
in the driving video and hallucinate the corresponding locations of
points in the target image. To track points in the driving video, we
use a simple optical flow tracker [Bouguet 2001]. We then halluci-
nate the corresponding pixel locations in the target image using the
aligning transformation ϕ. This peripheral set of control points are
illustrated with yellow points in the Figure 2. The peripheral set also
includes points along the image boundary that do not move through-
out the animation to help fix the background in place. The fiducial
points together with the peripheral points form the augmented set
of control points used to warp t∗ at each frame.
To interpolate the offsets of the sparse set of control points to a

dense warp field for the entire image, we use a Delauney triangula-
tion of the control points (see Figure 3(a)), which is computed on
s∗. Corresponding triangles on t∗ define a simple piece-wise linear
interpolation, which works well inside the facial region, where the
points are relatively dense, but may cause noticeable discontinuities
outside the facial region.
To alleviate this issue, we smooth the dense warp field with re-

spect to a confidence associated with each point. Inside the facial
region, where we have reliable correspondences, smoothing is un-
necessary and may take away from the desired facial expression
(e.g., the warped mouth in Figure 3(c) is no longer smiling). Outside
the facial region, we smooth the warp field by convolving it with a
disk whose radius increases away from the facial region. For effi-
ciency, we use 10 different blurring kernels with radii in the range[
0, 0.05 · Sdiaд

]
, where Sdiaд is the size of the image diagonal. We

then use inverse mapping to calculate the origin of each pixel in the
new animated target frame. As can be observed in Figure 3(d) the
spatially-variant warp keeps the facial details, and at the same time
smooths out the discontinuities.

5 TRANSFERRING HIDDEN REGIONS
When the driving video’s subject opens its mouth, the interior is
revealed which does not exist in the target image. We thus transfer
this region from each driving frame to the target video frame.
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Target frame ti Warped video frames s∗ and si Ri and result by Liu et al. [2001] Our refined Ri and result

Fig. 4. Our fine-scale details transfer procedure. For each target frame ti , we use the aligned video frame s∗ and si to obtain the analogous expressive form of
ti . As the figure demonstrates, the full ERI contains various artifacts. Our refined version yields a considerably cleaner result. ©Unsplash photographer Seth Doyle.

To achieve a natural composite, we first align the driving frame
si ∈ S with the warped target frame ti ∈ T using the warping
procedure described in the previous section. We then generate a
compatible target mouth using Poisson blending [Pérez et al. 2003]
to match color at the transition.

The crop region is determined according to the facial landmarks
on the mouth exterior. It is important to further ensure that these
landmarks fall within the lip region (and not on the skin). Thus, we
perform amorphological erosion on this mask. The disk radius is 0.1·
hmouth , where hmouth is the height (in pixels) of the mouth in the
target image t∗. We then alpha blend the compatible mouth into the
target image. The region that is transferred is determined according
to the facial landmarks on the mouth interior, and therefore, the
lips themselves are not transferred to the target face.

We only transfer the mouth interior when its size is significantly
bigger than in the input target image (otherwise we assume that it is
not hidden). Denote the area (in pixels) of the mouth interior in the
target image by a∗mouth , then the mouth interior is transferred when
atmouth > 2 ·a∗mouth . To achieve a temporally smooth sequence, we
linearly blend between the two mouth interiors when it is in the
range

[
a∗mouth , 2 · a

∗
mouth

]
.

6 TRANSFERRING FINE-SCALE DETAILS
In Section 4 we described how to warp the target image t∗ to gener-
ate the initial series of animated frames ti ∈ T . To fully generate a
realistic animated expression, we need to augment the target frames
with fine-scale shading changes extracted from the source video.
These details include the shading induced by wrinkles around the
eyes when we smile, or the creases alongside the smiling mouth.
Liu et al. [2001] presented a technique to compute an expression

ratio image (ERI), which captures such illumination changes of one
person’s expression. An ERI computation requires three aligned
images: two unexpressive images, denoted by Ia and Ib , one in the
source and one in the target, and an expressive image of the source,
denoted by Ĩa . The ratio image R, thus, approximates the illumina-
tion changes between the source pair:

R =
f (Ĩa )
f (Ia )

, (2)

where the function f (x) is some general function applied on the
input image, for example, taking the luminance channel only. The

unexpressive image in the target is then modified to obtain Ĩb which
is the analogous expressive form:

Ĩb = R · Ib . (3)

Therefore, for each frame ti , we align the unexpressive driving
frame s∗ ∈ S and the expressive driving frame si ∈ S with the
warped target frame ti ∈ T . To do so, we warp s∗ and si as described
in the previous section (see the warped video frames in Figure 4).
We can then compute the ratio image Ri and apply it to ti .

As can be observed in Figure 4, applying the full ratio image Ri
everywhere yields various undesired artifacts: (i) certain areas in
the image may become saturated, (ii) it can include outliers, which
are illumination changes that may be caused by shadowing from
the nose or misalignments (see the shadow beside the nose in the
figure), and (iii) it lacks temporal stability. Furthermore, undesired
artifacts may appear in the hair and the background in general.
Although our landmark detector can provide a partial facial mask,
which includes the chin up to the eyebrows, the forehead region
must be included as well to enrich the expressiveness of the face.
In what follows, we elaborate on our solutions to these issues that
provide the results seen in Figure 4 on the right-hand side.

Robustness to saturation. We have found the darkening inside the
wrinkles to be the most essential aspect of the ratio images. Also,
pixels in the ratio image that brighten, i.e., have value greater than
1, are often due to small misalignments of very dark regions near
the nostrils for example.

To avoid saturation in the output image, we tune down the bright-
ening effect by multiplying any pixel whose corresponding pixel
in Ri is larger than 1 by a constant fraction. We use a multiplying
factor of 0.01 in our implementation.

Facial region estimation. As the ERI is computed everywhere, we
need to estimate the facial region to avoid changes outside it. Since
we have 2D landmarks along the chin and the eyebrows, the only
region that still remains to be estimated is the forehead. To estimate
the location of the forehead, we first fit an ellipse to the points
along the chin. This provides us with an initial estimate. The initial
estimate is refined using a Grab-cut optimization [Rother et al. 2004],
and the ratio multiplier is only applied inside the face region.

Outlier detection and elimination. Certain values in the ratio im-
age are not due to momentary changes such as those that occur in
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transient creases or wrinkles that are important in conveying emo-
tion. Rather, they are due to cast shadows that may move slightly
due to face motion. We would like to remove these effects in the
ratio images. Some facial regions are more prone to cast shadows
for which we do not want to apply the ratio image. The most no-
table example is probably the side of the nose, which is commonly
shadowed by the nose itself. Another is the inside of the nostrils.
We would like to eliminate the effects of such ratio values by setting
them to 1, while allowing the transient ones to be used. We achieve
this with an outlier detection method.
In this context, outliers are pixels with significant ratio values

in a ratio image. In our implementation, values greater than 1.1
and less than 1

1.1 are considered significant. To be an outlier, these
values must also appear at approximately the same place in the
neutral frame, s∗. To detect these, we developed a method which is
conceptually similar to template matching. For each pixel in si , we
examine a small 3x3 neighborhood around it and perform a local
search for the best matching neighborhood in s∗ (within a 20x20
region and allowing up to 30 deg rotation).

Rather than thresholding the best match per pixel, per frame, to
determine outlier pixels, we do two things. First, we find connected
components of significant ratio values. Second, we perform the
outlier detection only once in a reference frame sr ef , the one that
is the most distinct from the neutral frame, s∗. All pixels in the
connected components in the reference frame that pass the threshold
are then propagated to other frames where the corresponding pixels
in the ratio images are set to 1. We will discuss each of these steps
in the following paragraphs.
In our implementation, connected components are formed by

8-neighbor connected pixels with significant ratio values in Ri (see
Figure 5, left-hand side). For each pixel in the connected component,
we record the minimum within the 20x20 search window, of the
maximum RGB pixel difference in the 3x3 neighborhood template.
We then average these minima, and if the average is less than 5,
we label the entire connected component as an outlier. Pixels in
outlier components in Ri are all set to 1 thus removing their effect
in the final image. See Figure 5 for an illustration of this procedure
(note that the corresponding warped video frame is illustrated in
Figure 4). As Figure 5 illustrates, most of the outlier regions are
detected. However, some regions still remain. For example, the left
brow and the left eye form a single connected component, obtaining
an average which is above the threshold due to the changes that
occur in the eye region.

To detect the expression reference frame, we estimate a similarity
transformationϕS∗→si between the landmarks in the first frame and
the landmarks of the current frame.We then compute the average L2
distance between the transformed facial landmarks. The frame with
the largest distance is then picked as the most not-neutral frame
and is used as the reference frame, sr ef , to detect the connected
components of outliers.
We then propagate the footprint of the connected components

to the rest of the video sequence. For each frame, we estimate a
similarity transformation ϕsi→sr ef between the landmarks in the
current frame and the landmarks of the reference frame. For each
pixel that is close enough to an outlier (less than 20 pixels in our
implementation), its Ri value is set to one.

Considering all regions Eliminating outlier regions

Fig. 5. Outlier detection. Left: Considering all the regions with significant
ratio values (each connected component is colored in a unique color) yields
the expressive image on the left. Right: By eliminating the outlier regions
(highlighted in red), we obtain a refined result, which does not contain, for
example, the cast shadow beside the nose. ©Unsplash photographer Seth Doyle.

Real Videos Animated Videos
1 2 3 4 5 1 2 3 4 5

Anger 0.00 0.11 0.11 0.42 0.35 0.10 0.28 0.21 0.28 0.13
Fear 0.00 0.02 0.08 0.6 0.31 0.08 0.26 0.16 0.34 0.15
Happy 0.00 0.02 0.11 0.40 0.47 0.02 0.17 0.23 0.33 0.24
Surprise 0.00 0.03 0.13 0.26 0.57 0.12 0.33 0.19 0.25 0.11

Average 0.00 0.04 0.11 0.42 0.43 0.08 0.26 0.20 0.30 0.16
Table 1. The user study results. The rankings (1-5) signify low (very likely
fake) to high (very likely real) scores.

Finally, to increase temporal stability for the sequence of ratio
images, we convolve a 21 frametime wide temporal Gaussian filter
over the aligned ratio images.

7 RESULTS AND EVALUATION

7.1 User study
We conducted a user study to quantitatively evaluate the quality of
our results. The participants were presented with real and animated
videos. We used videos from the MMI Facial Expression Database
[Pantic et al. 2005; Valstar and Pantic 2010]. The database contains
videos of persons expressing various emotions. We used videos
of subjects that had a complete set of four emotions (anger, fear,
surprise, happiness).

The videos contain a full temporal pattern, starting from a neutral
face, through a series of frames leading to the respective emotion,
and back to the neutral face. The animated videos were generated by
selecting the first video frames to be the target images and driving
these target images by one of the 3 × 4 (3 other subjects and 4
available emotions) driving videos.

The participants were presentedwith 24 randomly selected videos,
eight of which are real. They were asked to rate them based on how
real the animation looks. The 5-point Likert range of scores they
were provided with are: very likely fake, likely fake, could equally be
real or fake, likely real, very likely real. The participants were allowed
only one viewing of each video, to evaluate their first impression,
without having the option to repeat and look for problems. Thirty
users in the age range 20-50 participated in the study (with a 1.5male
to female ratio). We did not normalize the differences in individual
aptitude, as the differences were small.
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The results of the user study are illustrated in Table 1. Overall,
only 85% of the real videos were identified as such (were rated as
either likely real or very likely real). It seems that the participants
often over-analyzed the videos and convinced themselves that the
real videos looked fake. Our animated videos were identified as
real 46% of the time. The "happy" animations were perceived as the
most real (identified as real 58% of the time), while the "surprise"
animations were perceived as the least real (identified as real 37% of
the time). We believe that our success in hallucinating real videos
with our technique is surprisingly good, given the fact that humans
in general are particularly sensitive to facial nuances, especially
given that users were primed to look for fakery.

7.2 Pipeline evaluation
We demonstrate our technique on challenging casually-captured
internet portraits (Figures 1-3,12,13).
To drive these casual portraits, we used videos from the MMI

Facial Expression Database as well as videos that we captured on our
own. In Figure 13, we illustrate a sample of driving video frames of
subjects that we captured and the corresponding target animations.
In the paper, we display only a representative image, butmore results
are included in the accompanying video and in the supplementary
material.
To demonstrate the importance of the various stages in our

pipeline, we provide intermediate results of our technique in Fig-
ure 12. In the supplementary material, we provide the intermediate
results of the full animations. In what follows, we compare to
alternative methods.

7.2.1 Warping-only comparison to previous work. To evaluate
our confidence-aware warping technique, we compare against Fried
et al. [2016]. In their dense geometry proxy they manually annotate
three fiducial landmarks which is an overly meticulous task for an
entire video. Thus, we compare against their 2D warping strategy
by providing their technique with the sparse set of correspondences
we compute according to Section 4. Figure 6 demonstrates the re-
sults on a few image pairs. While the differences are subtle, the
advantage of our confidence-aware warping technique is visible
especially along strong edges (see the highlighted regions). As the
figure demonstrates, the results obtained using our warping tech-
nique are smoother. Furthermore, the final results of our method
also include the fine-scale details and the missing regions, and not
only the geometric warp which is demonstrated in the figure.

7.2.2 Reenactment evaluation. To evaluate our reenactment re-
sults, we compare our results to state-of-the-art video-to-video reen-
actment techniques. To meet their input requirements for a video,
we replicate the single target image we use to form a static video.
In the supplementary material, we include side-by-side compar-
isons of full sequences. Please refer to the full comparisons to better
appreciate the differences.

Thies et al. [2016]: In their work, they construct a mouth dataset
from the target input video. Since we start with a single image, all
the target frames contain the same replicated closed-mouth, thus
the mouth motion graph construction fails as it only contains a
single cluster. Therefore, for the sake of a comparison, the authors
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Fig. 6. Comparison against the image-based warping technique of Fried et
al.[2016]. We provide their technique with the sparse set of correspondences,
which contain facial and peripheral features, as detailed in Section 4. As
the figure illustrates, our confidence-aware warping strategy yields visibly-
smoother results.

of Thies et al. [2016] extended their work by constructing a mouth
database from the source sequence to blend it into the target. Even
with this extension, as illustrated in Figure 7, they only transfer the
expression of the face model. Thus, the head of target face is not
animated and remains still in an unnatural way and not brought
to life as with our technique. Furthermore, the expression (e.g., the
smile in Figure 7) generated using our technique is clearly more
natural, due to the fine-scale details which are added on top of the
image-based warp.

Garrido et al. [2014]: Unlike our approach which animates the full
target image, they only reenact the facial region. Their technique
resembles ours in the sense that they also employ a 2D warping
strategy and avoid mapping the face onto a 3D model. As demon-
strated in Figure 7, their technique registers the target face onto
the driving video frames, hence the identity of the target is not
preserved, even within the facial region.

7.3 Limitations
There are some notable limitations to our work. As demonstrated
in Figure 8, we cannot make significant changes to the head pose
as we only have the visual information in the single target image.
Furthermore, we assume the target image contains a neutral face,
and when that assumption is violated, the output frames may seem
unnatural. We are also limited by the accuracy of the face tracker
we are using. Currently, our results exhibit some temporal artifacts,
especially for non-uniform backgrounds. Moreover, there is not
enough detail to fully close the eyes of the target image. However,
eye-blinking happens quickly in a playing video, and therefore this
unnatural affect is almost unnoticeable. A plausible solution should
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Fig. 7. Comparison to previous reenactment works by replicating the single
target image (on the bottom left) to form a video. Representative driving
frames appear on top, and the corresponding animated frames below. As
the figure illustrates, Garrido et al. [2014] only transfer the facial region
and the identity of the target is not preserved, even within this region. In
Thies et al. [2016], the head cannot move, hence the generated expressions
are significantly less natural-appearing. The full sequences are included in
the supplementary material.

incorporate a personalized "eye closing" manipulation, and would
require special treatment of such features, like the "eye opener" of
Shu et al. [2016].

7.4 Runtime
Our method is implemented in C++. Given a target image of 600-
by-800-pixel resolution, reenacting a driving video of 100 frames
(roughly three seconds) takes about 42 seconds on average on a 2.8
GHz Intel Core i7 Mac-Book Pro. For each driving video, we pre-
compute the tracked features and the ratio images for each frame.
At runtime, we first warp the target image, the driving video frame,
and the ratio image according to our warping procedure. Typical
runtime is around 28 seconds for the warp computations. In the
remaining 14 seconds, we add the fine-scale details and hallucinate
missing regions.

8 APPLICATIONS
Our technique enables automatically animating a still portrait, mak-
ing it possible for the subject in the static target image to express
various emotions. Our primary application is in creating reactive
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(b) Violation of neutral target face assumption

Fig. 8. Limitations of our method. (a) Starting from a neutral target image
(on the bottom left), our image-based approach eventually breaks as the
local geometric features or the head pose significantly change. (b) When
the target image violates the neutral target face assumption (on the bot-
tom left), noticeable distortions may occur as the expression evolves. The
corresponding driving frames are illustrated on top in both (a) and (b).

Nm70URdtf3c 

Fig. 9. We generated reactive profiles in the context of a mocked up Face-
book page. See the accompanying video for a full demonstration.

profiles (Section 8.1). We further show that our approach can be
directly applied to old portraits and facial avatars (Section 8.2).

8.1 Reactive profiles
Reactive profiles are portraits that can react to different stimuli,
or triggers. These moving portraits are probably most well-known
from Harry Potter’s magical world, where people in photographs
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Fig. 10. Animating portraits. The original portraits appear on the left, alongside a few representative frames. Please refer to the accompanying video for the
animation clips. ©Wikimedia

move, wave, etc. Our technique enables to automatically generate
such moving portraits from a single reference image.
To do so, we used the available driving videos to generate the

various emotion animations.We also capturedmultiple subjects who
were asked to stare idly at the camera for a few seconds. Snippets
from the "Talking Face Video" [Cootes Cootes] were also used. These
additional videos were used to create an idle state, to make it feel as
if the subject in the portrait is simply breathing, without making
any significant facial animations.

We can then transition between the different states, or emotions,
on the fly. Using our technique, single target images can follow
these driving videos to create new reactive profiles. We created a
demowith reactive profiles that react to triggers in real-time. See the
accompanying video to view a reactive profile that was generated
in the context of a mocked up Facebook page (see Figure 9 for an
illustration).

8.2 Non photo-realistic faces
To demonstrate our method on wider scope of facial images, we
applied our technique directly on painted portraits and facial avatars
(e.g., emojis).

Figure 10 illustrates representative frames (driven according to
the driving frames that appear in the first six columns of Figure 13)
on a few famous portraits. We are not aware of any previous works
that manipulate and animate these portraits completely automati-
cally, as we do. Furthermore, we provide the full animations in the
accompanying video.
Taigman et al. [2016] recently presented a technique which en-

ables automatically generating a neutral facial avatar (emoji) from a
facial image. Our technique is able to animate these emojis as well
to express various emotions. Figure 11 illustrates representative
frames (driven according to the driving frames that appear in the
first four columns of Figure 13). In the accompanying video, we
provide the full animations which were generated automatically
using our technique.
As previously stated, we applied our technique as is, without

adjusting to the painted portrait or emoji domain. To avoid mapping
realistic teeth to the emoji animation, we demonstrate this appli-
cation on a few driving videos where the teeth are not apparent
throughout the animation.
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Fig. 11. Animating facial avatars (emojis). Emojis (first column) are generated automatically on sample images from the CelebA dataset [Taigman et al. 2016].
Using our technique, these emojis can animate various expressions. Above, we provide representative frames.

9 CONCLUSIONS AND FUTURE WORK
We have presented a method that brings life to a single still por-
trait in the sense that the image is animated to imitate the facial
expressions of a driving video. The use of a single input image cap-
tured in casual settings is particularly challenging, but it offers a
wide applicability of the method. Technically, the main challenge
was to preserve the identity of the target face, while manipulating
it with warps and features taken and transferred from frames of
some arbitrary driving video. We built on the fact that there is a
significant commonality in the way humans "warp" their faces to
make an expression. Thus, transferring local warps between aligned
faces succeeds in hallucinating facial expressions. We transfer both
geometric warps, consisting of 2D offsets, and photometric changes,
consisting of illumination ratios.
As we have shown, the internal features of the mouth of the

driving video are transplanted to the target face to compensate for
the disoccluded region. Although this transplanting violates our
goal of keeping the identity of the target face features, the affect of
this violation is only secondary, since humans in general are not
as sensitive to teeth as a recognition cue. For future work, we plan
to consider automatically selecting driving videos that best match
the target face to begin with. In this work, we deliberately avoided
using such a selection to show the robustness of the method to an
arbitrarily selected video.

In the future, we will consider combining our technique with
3D methods. For example, if the face departs from a frontal facing
pose, we can map the face over a template 3D face and use the
rotated 3D model to allow a wider motion of the facial region. For
such non-frontal poses, we can tolerate a certain drop in the quality
caused by the re-projection of the image.
We expect other fun applications for the work we have shown

here. One can imagine coupling this work with an AI to create an
interactive avatar starting from a single photograph.
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Fig. 13. Various driving videos animating casual still images. Representative frames are provided above. Please see the accompanying video for animations.
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