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Abstract
We present a co-segmentation technique for space-time co-located image collections. These prevalent collections capture
various dynamic events, usually by multiple photographers, and may contain multiple co-occurring objects which are not
necessarily part of the intended foreground object, resulting in ambiguities for traditional co-segmentation techniques. Thus,
to disambiguate what the common foreground object is, we introduce a weakly supervised technique, where we assume only
a small seed, given in the form of a single segmented image. We take a distributed approach, where local belief models are
propagated and reinforced with similar images. Our technique progressively expands the foreground and background belief
models across the entire collection. The technique exploits the power of the entire set of image without building a global
model, and thus successfully overcomes large variability in appearance of the common foreground object.We demonstrate that
our method outperforms previous co-segmentation techniques on challenging space-time co-located collections, including
dense benchmark datasets which were adapted for our novel problem setting.

Keywords Image co-segmentation · Foreground extraction · Non-rigid and deformable motion analysis · Belief propagation

1 Introduction

Nowadays, Crowdcam photography is both abundant and
prevalent [1,2]. A crowd of people capturing various events
form collections with great variety in content. However, they
normally share a common theme. We refer to a collection of
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images that was captured about the same time and space as
“Space-time Co-located” images, and we assume that such a
co-located collection contains a significant subset of images
that share a common foreground object, but other objects
may also co-occur throughout the collection. See Fig. 1 for
such an example, where the Duchess of Cambridge is pho-
tographed in her wedding, and some of the images contain,
for instance, her husband, Duke of Cambridge.

Foreground extraction is one of the most fundamental
problems in computer vision, receiving ongoing attention for
several decades now. Technically, the problem of cutting out
the common foreground object from a collection of images is
known and has been referred to as co-segmentation [6,9,26].
A traditional co-segmentation problem assumes that objects
which are both co-occurring and salient necessarily belong to
the foreground regions. However, the space-time co-location
of the images leads to a more challenging setting, where the
premise of common co-segmentation techniques is no longer
valid, as the foreground object is not well-defined. Therefore,
we ask the user to provide a segmented template image to
specify what the intended foreground object is.

The foreground object varies considerably in appearance
across the entire space-time co-located collection. Thus, we
do not use a single global model to represent it, but instead
take a distributed local approach.We decompose each image
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Fig. 1 The appearance of the Duchess of Cambridge varies throughout
the images that capture her wedding ceremony. Starting from a single
image template (marked with a red border), our method progressively
expands the foreground belief model across the entire collection

into parts at multiple scales. Parts store local beliefs about the
foreground and background models. These beliefs are itera-
tively propagated to similar parts within and among images.
In each iteration, one image is selected as the current seed.
See Fig. 2 which illustrates the progression of beliefs in the
network of images.

The propagation of beliefs from a given seed is formu-
lated as a convex belief propagation (CBP) optimization.
Foreground and background likelihood maps of neighbor-
ing images are first inferred independently (see Sect. 4.2).
These beliefs are then reinforced across images to consoli-
date local models and thus allow for more refined likelihood
estimates (see Sect. 4.3). To allow for a joint image inference,
we extend the CBP algorithm to include quadratic terms.

We show thatwhen starting from a reliable seedmodel, we
can progressively expand the foreground belief model across
the entire collection. This gradual progression succeeds to
co-segment the collection, outperforming state-of-the-art co-
segmentation techniques on rich benchmark datasets which
were adapted for our problem setting. We also provide an
extensive evaluation on various space-time co-located collec-
tions which contain repeated elements that do not necessarily
belong to the semantic foreground region. Our analysis
demonstrates the advantages of our technique over previous
methods, and in particular illustrates its robustness against
significant cluttered backgrounds.

Explicitly stated, the main contributions of our work are
the introduction of the novel co-segmentation problem for
space-time co-located image collections, and technically, a
distributed approach that can handle the great variability in
appearance of the foreground object.

2 Related work

Segmenting and extracting the foreground object from an
image is a fundamental and challenging problem, which
has received significant ongoing attention. Extracting the
foreground object requires some guidance or supervision
since in most cases it is unclear what the semantic intent
is. When several images that share a common foreground are
given, the problem is referred to as co-segmentation [25].
Many solutions have been proposed to the co-segmentation
problem, which can be applied to image collections of vary-
ing sizes and characteristics [5,6,9,17,26]. Co-segmentation
techniques learn the appearance commonalities in the col-
lection to infer the common foreground object or objects. To
initialize the learning process, unsupervised techniques are
usually based on objectness [28] or visual saliency [6,27]
cues to estimate the target object.

State-of-the-art co-segmentation methods are based on
recent advancements in feature matching and correspon-
dence techniques [9,26,27]. Additional cues may also be
considered, such as depth in the co-segmentation work of
Fu et al. [11]. Rubinstein et al. [26] proposed to combine
saliency and dense correspondences to co-segment large and
noisy internet collections. Faktor and Irani [9] also use dense
correspondences; however, they compute statistical signifi-
cance of the shared regions, rather than computing saliency
separately per image.These techniques are unsupervised, and
they assume that recurrent and unique segments necessarily
belong to the object of interest. However, inmany collections
this is not the case, and some minimal semantic supervision
is then required. Batra et al. [3], for example, aimed at topi-

Fig. 2 Our technique iteratively propagates beliefs to images (framed
in blue) which are adjacent to the current seed (framed in red). In each
iteration, object likelihood maps are first inferred from the seed image

to each one of its adjacent images (illustrated with red edges) and then
these maps are propagated across similar images (illustrated with blue
edges) to reinforce the inference
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cally related images, and their supervision was given in the
form of multiple user scribbles. In our work, we deal with
images that belong to the same instance, and not to a general
class, which exhibit great variability in appearance. We use
the segmentation of a single image in the collection to guide
the process and target the intended object.

The work of Kim and Xing [15] is most closely related
to ours. In their work they address the problem of multi-
ple foreground co-segmentation, where K objects of interest
repeatedly occur over an entire image collection. They show
promising results when roughly 20% percent of their images
are manually annotated. In our work, we target a single
object of interest, while space-time co-located collections
often contain several repeated elements that clutter and dis-
tract common means to distinct the foreground. Unlike their
global optimization framework, that solves for all the seg-
mentations at once, our technique gradually progresses, and
each image in turn guides the segmentation of its adjacent
images. In this sense of progression, the method of Kuettel
et. al [18] is similar to ours. However, theirmethod is strongly
based on the semantic hierarchy of ImageNet, while we aim
at segmenting an unstructured space-time co-located image
collection.

There are other space-time co-located settings where
images share a common foreground. One setting is a video
sequence [7,10,24,30], where the coherence among the
frames is very high. It is worth noting that even then, the
extraction of the foreground object is surprisingly difficult.
Few recent techniques (e.g., [8,20]) address a multi-view
setting, where multiple synchronized videos capture a cer-
tain scene. Kim and Xing [16] presented an approach to
co-segment multiple photo streams, which are captured by
various users at varying places and times. Similarly to our
work, they also iteratively use a belief propagation model
over the image graph. Another setting is multi-view object
segmentation, e.g., [4,12], where the common object is cap-
tured from a calibrated set of cameras. These techniques
commonly employ 3D reconstruction of the scene to co-
segment the object of interest. In our setting, the images are
rather sparse in scene-space and not necessarily captured all
at once, which makes any attempt to reconstruct the target
object highly improbable.

3 Co-segmentation using iterative
propagation

Wedescribe the foreground and backgroundmodels, denoted
by F and B, using local beliefs that are propagated within and
across images. To define a topology over whichwe propagate
beliefs, we construct a parts-level graph Gp, where nodes
are image parts from all images, and edges connect corre-
sponding parts in different images or spatially neighboring

Fig. 3 The image-level graph G i (on top) defines a topology of images
over which local belief models are iteratively propagated. In each iter-
ation, a seed image (marked with an orange border) propagates the F/B
likelihood maps to its adjacent images (marked with a purple border).
From these likelihood estimates, we extract the common foreground
object (in red) and choose the next seed image

parts within an image. Furthermore, we define an associated
image-level graph G i, where the nodes correspond to the
images, and two images are connected by an edge if there
exists at least one edge inGp that connects the pair of images.
In Sect. 4.3, we describe inmore detail how these inter-image
connections are built. In short, they connect corresponding
parts, as illustrated in Fig. 3. The F/B likelihoods are itera-
tively propagated throughout the part-level graph Gp, while
the propagation flow is determined according to the image-
level graph G i. The graph topology is illustrated in Fig. 3.

In what follows, we first explicitly define the graph topol-
ogy. We then describe how these beliefs are gradually spread
across the entire image collection, starting from the user-
segmented template image.

3.1 Propagation graph topology

The basis for the propagation is image parts. To obtain the
parts, we use the hierarchical image segmentation method
of Arbeláez et al. [23]. We threshold the ultrametric contour
map, which defines the hierarchy of image regions, at a rel-
atively fine level (λi = 0.15). See Fig. 6 (on the left) for
an illustration of the parts obtained at a number of differ-
ent levels. The level we use for the image parts is illustrated
in the left-most image. Although a fine level yields a large
number and perhaps less meaningful parts, we would like
to avoid issues concerning parts which are not accurate. A
coarser level often merges between foreground and back-
ground parts.

We construct a parts-level graphGp, where edges connect
corresponding parts or spatially neighboring parts within an
image. To compute reliable correspondences between image
parts, we use the non-rigid dense correspondence technique
(NRDC) [13], which outputs a confidencemeasure (with val-
ues between 0 and 1) alongwith each displacement value.We
consider corresponding pixels to be those with a confidence
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which exceeds a certain threshold, which we set empirically
to 0.5.

Two images are connected by an edge in the associated
image-level graph G i if there exists at least one edge in Gp

that connects the pair of images.

3.2 Iterative likelihood propagation

We assign each part in Gp a foreground likelihood. Initially
all parts are equally likely to be foreground or background
(except the parts in the user-segmented template image,
whose F-likelihood is either exactly 0 or 1).

The likelihoods are iteratively propagated throughout the
graphs. In each iteration, a seed image is selected and its
likelihoods are propagated to the adjacent neighbors in G i.
In the first iteration, the seed image is always the user-
segmented template image. In subsequent iterations the seed
image randomly picked from the neighbors of the current
seed. Within an iteration, the seed image likelihoods are
considered fixed. Note that the template image likelihoods
remain fixed throughout the whole algorithm.

The details of this propagation are described in the next
section. The new estimates are first derived separately,
according to Sect. 4.2, and are then jointly refined, accord-
ing to Sect. 4.3. These new likelihood estimates are combined
with previous estimates, where estimates are amortized along
their propagation, and get exponentially lower weights over
time, as we have more confidence in beliefs that are closer to
our template image.

After propagating the likelihoods, we update the
foreground–background segmentation for the next seed using
a modified implementation of graph-cuts [18], where the
unary terms are initialized according to the obtained like-
lihoods.

The algorithm above is terminated once all images have
been propagated to at least once. To avoid error accumula-
tion, we execute the full pipeline multiple times (five in our
implementation). The final results are obtained by averaging
all the likelihood estimates follows by a graph-cut segmen-
tation.

4 Likelihood inference propagation

Our algorithm uses convex belief propagation and further
extends the variational approximate inference program to
include quadratic terms. Therefore, in Sect. 4.1, we briefly
introduce notations used in later sections. In Sect. 4.2, we
present an approach to infer an object likelihood map of a
single target image from a seed image. Finally, in Sect. 4.3,
we introduce a technique to propagate the likelihood maps
across similar images to improve the accuracy and reliability
of these inferred maps.

4.1 Convex belief propagation

Markov random fields (MRFs) consider joint distributions
over discrete product spaces Y = Y1 × · · · × Yn . The joint
probability is defined by combining potential functions over
subsets of variables. Throughout this work we consider two
types of potential functions: single variable functions, θi (yi ),
which correspond to the n vertices in a graph, i ∈ {1, ..., n},
and functions over pairs of variables θi, j (yi , y j ) that corre-
spond to the graph edges, (i, j) ∈ E . The joint distribution
is then given by Gibbs probability model:

p(y1, ..., yn) ∝ exp
( ∑
i∈V

θi (yi ) +
∑
i, j∈E

θi, j (yi , y j )
)
. (1)

Many computer vision tasks require to infer various
quantities from the Gibbs distribution, e.g., the marginal
probability p(yi ) = ∑

y\yi p(y1, ..., yn).
Convex belief propagation [14,29] is a message-passing

algorithm that computes the optimal beliefs bi (yi ) which
approximate the Gibbs marginal probabilities. Furthermore,
under certain conditions, these beliefs are precisely the
Gibbs marginal probabilities p(yi ). For completeness, in
the Supplementary Material, we define these conditions and
explicitly describe the optimization program.

4.2 Single target image inference

In the following we present the basic component of our
method, which infers an object likelihood map of a target
image from an image seed. We construct a Markov random
field (MRF) on the parts of the target image and use a convex
belief propagation to infer the likelihood of these parts to be
labeled as foreground.

Each part can be labeled as either foreground or back-
ground, i.e., yi ∈ {−1,+1}. First, we describe the local
potentials of each part θi (yi ), which describe the likelihood
of the part to belong to the foreground or the background.
Then, we describe the pairwise potentials θi, j (yi , y j ) , which
account for the spatial relations between adjacent parts. We
infer the foreground–background beliefs of the parts in the
target image bi (yi ) by executing the standard convex belief
propagation algorithm [14,29].

4.2.1 Local potentials

The local potentials θi (yi ) express the extent of agreement of
a part with the foreground or background models. To define
parts in the seed image, we use the technique of Arbeláez et.
al [23] at multiple levels to obtain a large bag of candidate
parts of different scales. Let i be a part in the target image,
and s be a part in the source image seed. Then for each source
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part s, we compute its compatibility with a target part i , and
denote it by pcomp(i, s).

To construct the foreground/background likelihood of
each part in the target image i , we consider the F/B parts
of the source seed, and set

θi ( f ) = max
s∈F pcomp(i, s) and θi (b) = max

s∈B pcomp(i, s),

where f and b are the two labels that can be assigned to yi .
We define our compatibility measure as follows:

pcomp(i, s) = pcorr(i, s) + δ · psim(i, s), (2)

where δ is a balancing coefficient that controls the amount of
enrichment of the available set of correspondences. The term
pcorr(i, s) measures the fraction of pixels that are matched
between parts i and s. This is measured according to

pcorr(i, s) = N (i, s) |s|−1, (3)

Fig. 4 Corresponding foreground parts of adjacent images in G i

according to pcorr only (top row) vs our enriched compatibility mea-
sure (bottom row) that contains significantly more compatible parts.
The foreground source is displayed on the left

where N (i, s) is the number of corresponding pixels, and |s|
is the number of pixels in part s. As mentioned before, the
matching is based on NRDC.

We identified that highly compatible parts are rather
sparse, and thereby pcorr(i, s) is almost always zero in many
source-target pairs. Nonetheless, we can exploit these sparse
correspondences to discover new compatible parts with the
term psim(i, s). See Fig. 4 for an illustration of the compatible
target parts in the foreground regions without (top row) and
with (bottom row) our enrichment term psim(i, s). In prac-
tice, since the background does not necessarily appear in both
source and target image, δ > 0 only for regions s ∈ F .

In these foreground regions, the term psim(i, s) aims at
revealing a similarity between parts whose appearance and
spatial displacement highly agree. Similarity in appearance,
in our context, is measured according to the Bhattacharyya
coefficient of the RGB histograms, following the method of
[21]. In order for parts i and s to highly agree in appearance,
we further require that i ∈ top-k(s), where the number of
nearest neighbors is set to three. To recognize parts whose
spatial displacement agree, we utilize the set of correspond-
ing pixels in the foreground regions. We approximate the
pixel values of the part corresponding to s according to the
known correspondences. Formally, for each s ∈ F , let i(s) be
the estimated corresponding region in the target. Thus, for a
similarity between parts i and s, we require that i ∩ i(s) �= ∅.

To simplify computations, we assume i(s) to be a circle
within the target image, which we compute according to the
closest and farthest foreground correspondences. These two
corresponding points define a relative scale between the two
images. To compute the circle center, we compute the relative
offset from the closest corresponding point (using the relative
scale). The radius is determined according to the distance to
the nearest corresponding point in the target. See Fig. 5a for
an illustration of the estimated corresponding region i(s).

Fig. 5 a Based on two reliable correspondences (in blue), the relative
offset (in red) to a part (light blue) defines the region where the cor-
respondent part is expected (marked with a light blue circle). b The
multi-scale parts of the source seed image are matched to the parts of

the target image (on the right). The parts that yield maximum compati-
bility are highlighted in unique colors (corresponding to the highlighted
parts of the target image on the right)
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Fig. 6 Given the image on the left, parts are obtained using hierarchical
segmentation. For each target image in the collection, we obtain a large
number of parts, as in the left-most image. On the right are visualiza-
tions of various parts (colored in black) and the potentials which are

induced to their neighboring parts. The neighboring parts are colored
according to their proximities which are expressed in Eq. (4) (warm
colors correspond to strong proximities, while cool colors correspond
to weaker proximities)

Putting it all together, psim(i, s) is measured according to

psim(i, s) =
{ ∑163

u=1
√
hist(i)u · hist(s)u i ∈ top-k(s), i ∩ i(s) �= ∅

0 otherwise.

In our experiments, we set δ = 0.1 for all the foreground
regions. See Fig. 5b for an illustration of the multi-scale
source parts that obtainedmaximum compatibility with parts
in the target image.

4.2.2 Pairwise potentials

The pairwise potential function θi, j (yi , y j ) induces spa-
tial consistency from the part generation process within the
image. As previously mentioned, we obtain parts at multiple
scales by thresholding at varying levels λi in the ultrametric
contour map (see Fig. 6 for an illustration).

Tomeasure spatial consistencies between adjacent parts in
the target, we can compute how quickly these two partsmerge
into one by examining the level λmerge where the two parts
become one. Hence, we define a pairwise relation between
adjacent parts in each target image according to:

θ intrai, j (yi , y j ) = exp
(−τ

(
λmerge − λmin

)) · yi y j (4)

where the parameter τ = 4 was set empirically, and the
finest level we examine to measure the spatial consistencies
is λmin = 0.2 (a merge there would induce the strongest
proximity between the parts). See the heat-maps in Fig. 6
for an illustration of θ intrai, j (yi , y j ) on a few randomly chosen
target parts. We empirically multiply the pairwise terms by
a balancing coefficient of 0.05 to better balance between the
local and pairwise terms involved in the single target image
inference optimization.

4.3 Joint multi-target inference

In Sect. 4.2, we presented our approach to infer an object
likelihood map from a seed image. In our setting, similar

Algorithm 1 One propagation iteration

Input: G i,Gp, and seed image I seed

for each adjacent image I do
bi (yi ) ← BP(θi (yi ), θ intrai, j (yi , y j )) {compute beliefs for yi ∈ I}
θ∗
i (yi ) ← bi (yi )

end for
b∗
i (yi ) ← BP(θ∗

i (yi ), θbi, j (yi , y j )) {compute beliefs jointly}

regions may co-occur across multiple images. Therefore, to
improve the accuracy and reliability of the likelihood maps
obtained by a single inference step, we propagate the inferred
maps onto adjacent images in the image graphG i. The output
beliefs of each inferred target image are sent to its neighbors
as a heat-map (i.e., per part foreground–background prob-
ability). Thus, our likelihood maps are complemented with
joint inference across neighboring images. As stated earlier,
neighboring images are images which are connected by an
edge on the image graph G i.

To differentiate the different types of edges on Gp, we
denote the edges that connect parts across images by Eb. A
joint inference is encouraged by a pairwise potential function
betweenmatched parts in Eb. Since the labels satisfy yi , y j ∈
{−1,+1}, this can be done with the potential function

θbi, j (yi , y j ) =
(
pcorr(i, j) + pcorr( j, i)

)
yi y j (5)

Simply stated, the local potentials propagate the output
beliefs of one target as input potentials of its neighboring
images. Algorithm 1 describes how these output beliefs are
refined through a joint inference. The initial beliefs, denoted
in Algorithm 1 by bi (yi ), are computed for each adjacent
image in the image graph G i independently. These initial
beliefs become the local potentials, denoted in Algorithm 1
by θ∗

i (yi ). A joint inference thus yields the output beliefs
b∗
i (yi ). Our intuition is that the output beliefs bi (yi ), which
are concluded by running a convex belief propagation within
its image, serve as a source seed signal to the neighbor-
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ing image. We multiply the weights of the pairwise term by
two to better balance between the two terms involved in the
joint optimization. Our two-step approach introduces novel
nonlinearities to the propagation algorithm. To control these
nonlinearities, we extend the variational approximate infer-
ence program to include quadratic terms.

Wealsodetermine the conditions forwhich these quadratic
terms still define a concave inference program and prove that
repeated convex belief propagation iterations across images
achieve its global optimum. We refer the interested reader to
the SupplementaryMaterial for more details on our extended
variational approximate inference program.

5 Results and evaluation

We empirically tested our algorithm on various datasets
and compared our segmentation results to two state-of-the-
art unsupervised co-segmentation techniques [9,26] and to
another semi-supervised co-segmentation technique [15].
The merit of comparing our weakly supervised technique
with unsupervised ones is twofold; first, it serves as a
qualitative calibration of the results on the new co-located
setting, and second, it clearly demonstrates the necessity of
some minimal supervision to define the semantic foreground
region.

It should be noted that although [15] discuss an unsuper-
vised approach as well, they only provide implementations
for the semi-supervised approach. To be compatible to our
input, we provide theirmethodwith one input templatemask.
Wemeasure the performance on different datasets, including
benchmark datasets that were adapted for our novel problem
setting. Once our work is published, we will make the full
implementation of our method publicly available, along with
the datasets that were used in the experiments.

Space-time images We evaluated our technique on various
challenging space-time co-located image collections depict-
ing various dynamic events. Some of them (Bride, Singer
and Broadway) were downloaded from the internet, while
others (Toddler, Baby, Singer with Guitarist and
Peru) were casually captured by multiple photographers.
These images contain repeated elements that do not nec-
essarily belong to the semantic foreground region, and the
appearance of the foreground varies greatly throughout the
collections. We provide thumbnails for the full seven sets,
together with results and comparisons, in the Supplementary
Material. We demonstrate results starting from various tem-
plate images. Please refer to these results for assessing the
high quality of our results.

For a quantitative analysis, we manually annotated the
foreground regions of three of our collections (Bride, Tod-
dler, and Singer), and report the precision P (percentage

Table 1 Comparison against co-segmentation techniques on an anno-
tated subset of our space-time co-located collections

Bride Singer Toddler

P J P J P J

[26] 47.3 16.6 28.9 16.6 49.6 25.7

[9] 71.1 42.9 68.4 30.4 81.8 44.1

[15] 63.9 27.4 88.8 63.4 66.7 38.9

Ours 88.9 76.3 94.2 83.0 94.5 74.2

of correctly labeled pixels) and Jaccard similarity J (inter-
section over union of result and ground-truth segmentations)
as in previous works (see Table 1). It should be noted that, to
strengthen the evaluation, we perform three independent runs
for the semi-supervised techniques, starting from different
random seeds, and report the average scores. Figure 7 shows
a sample of results, where the left-most image is provided
as template for the semi-supervised techniques. As can be
observed from our results, the unsupervised co-segmentation
techniques fail almost completely on our co-located collec-
tions. Regarding the semi-supervised technique, as Fig. 7
demonstrates, when both the foreground and background
regions highly resemble those of their counterparts in the
given template, then the results of [15] are somewhat com-
parable to ours. As soon as the backgrounds differ or there are
additional models that were not in the template, their method
includes many outliers, as can be seen in Fig. 7. Unlike their
method, we avoid defining strict global models that hold for
all the images in the collection, and thus allow flexibility that
is required to deal with the variability across the collection.

Multiple foreground objects We also compared our perfor-
mance to [15] using their data. We use their main example,
which also corresponds to our problemsetting.The results are
displayed in Fig. 8 where we mark the multiple foreground
objects in different colors. We execute our method multiple
times with different seeds to meet their input. As we can see
here and in general, our method has less false-positives and
is more resistant to cluttered backgrounds. If we are able to
spread our beliefs toward the target image, then we succeed
in capturing the object rather well. Quantitatively, our tech-
nique cuts the precision error by more than half (from 6.89%
down to 2.68%). However, if there is not enough confidence
that reaches the target image, then the object remains unde-
tected, as can be observed in the uncolored basket of apples in
the rightmost image. This is the main weakness of our propa-
gation technique. If meaningful connections do not exist, the
beliefs fail to spread within the collection.

Sampled video collectionsTheDAVIS dataset [22] is a recent
benchmark for video segmentation techniques, containing 50
sequences that exhibit various challenges including occlu-
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Fig. 7 Comparison to state-of-the-art co-segmentation techniques. The
top three rows illustrate the results obtained by the RJKL13 [26],
FI13 [9], and KX12 [15], respectively. The bottom row illustrate our

results. For both our technique and [15], the left-most image is provided
as template. Please refer to the SupplementaryMaterial for an extensive
and interactive comparison
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Fig. 8 Comparison to [15] on their dataset. The top row illustrates
the ground-truth labellings of multiple foreground objects: apple bas-
ket (in pink), pumpkin (in orange), baby (in yellow) and two girls (in

green and blue). The bottom rows illustrate their results (middle row)
and ours (bottom row) On average, our method yields higher P scores
(97.32 
 93.11%) and comparable J scores (49.02–49.61%)

sions and appearance changes. The dataset comes with
per-frame, per-pixel ground-truth annotations. We sparsified
these sequences (taking every 10th frame) to construct a large
number of datasets that are somewhat related to our prob-
lem setting. Table 2 shows the intersection-over-union (IoU)
scores on a representative subset and the average over all 50
collections. Note that this score is also referred to as “Jac-
card(J) per sequence.” Similar to the input provided to video
segmentation techniques in the mask propagation task, we
also provide the semi-supervised techniques with a manual
segmentation of the first frame. However, on our sparsified
collections, subsequent frames are quite different, as illus-
trated in Fig. 9 and in Supplementary Material.

Our extensive evaluation on the adapted DAVIS bench-
mark clearly illustrates, first of all, the difficulty of the
problem setting, as the image structure is not temporally-
coherent, and unlike dense video techniques, we cannot
benefit from any temporal priors. Furthermore, it demon-
strates the robustness of our technique, as it achieves the
highest scores on most of the datasets, as well as the highest
average score on all 50 collections. It is important to note that
in many cases our scores are comparable to video segmenta-
tion techniques. For example, the recent video segmentation
technique byMarki et al. [19] obtains an average intersection-
over-union (IoU) score of 0.67 on the full dense collections,
while our average score (on the sparsified collections) is 0.53.

6 Conclusions and future work

In this work, we have presented a co-segmentation method
that takes a distributed approach. Common co-segmentation
methods gather information from all the image in the col-
lection, analyze it globally, building a common model, and
then infer the common foreground objects in all, or part of,

Table 2 Comparison against RJKL13 [26], FI13 [9], and KX12 [15]
on the sparsified DAVIS benchmarks

RJKL13 FI13 KX12 Ours

Bear 0.19 0.05 0.73 0.92

Blackswan 0.30 0.07 0.74 0.64

bmx-trees 0.04 0.06 0.08 0.27

bmx-bumps 0.03 0.17 0.24 0.28

Breakdance-flare 0.10 0.08 0.25 0.08

Breakdance 0.09 0.09 0.50 0.29

Bus 0.50 0.84 0.73 0.79

Dance-twirl 0.13 0.04 0.15 0.40

Libby 0.38 0.14 0.29 0.41

Dog 0.36 0.61 0.71 0.57

Drift-chicane 0.02 0.00 0.02 0.00

Drift-straight 0.13 0.31 0.11 0.26

Mallard-water 0.06 0.37 0.46 0.69

Mallard-fly 0.01 0.05 0.47 0.13

Elephant 0.13 0.00 0.28 0.45

Flamingo 0.18 0.23 0.43 0.64

Goat 0.07 0.04 0.42 0.64

Hike 0.17 0.00 0.36 0.89

Paragliding 0.30 0.13 0.80 0.82

Soccerball 0.02 0.00 0.37 0.67

Surf 0.12 0.94 0.63 0.96

Average 0.16 0.22 0.36 0.53

Following previous work, we report the IoU scores on a representative
subset and the average is computed over all 50 sequences
Bold signifies best score

the images. Here, there is no global model. The beliefs are
propagated across the collection without forming a global
model of the foreground object. Each image independently
collects the beliefs from its neighbors and consequentially
infers its own model for the foreground object. Although our
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Fig. 9 Qualitative results of our technique on a sequence of sparse frames sampled from the Davis dataset [22], where the first frame is provided
as template

method is distributed, currently there is a seed model, which
clearly does not concur to the claim of having a distributed
method. However, some supervision is necessarily required
to define the semantic target model. Currently, it is provided
as a single segmented image, but the seedmodel can possibly
be provided in other forms.

We have shown that our approach outperforms state-of-
the-art co-segmentation methods. However, as our results
demonstrate, there are limitations as the object cut-outs are
imperfect. The entire object is not always inferred and also
portions of the background may contaminate the extracted
object. To alleviate these limitations, there are two possi-
ble avenues for future research: (i) one in high level, to
better learn the semantics of the object, perhaps using data-
driven approaches, e.g., convolutional networks, and (ii) in
low level, seeking for better alternatives to graph-cuts and its
inherent limitations.

In the future, we hope to explore our approach on massive
collections, which may include thousands of photographs
capturing interesting dynamic events, for example, a collec-
tion of images of a parade, where a 3D reconstruction is not
applicable. The larger number of images is not just a quan-
titative difference, but qualitative as well, as the collection
can become dense with stronger local connections. For such
massive collections, the foreground object does not have to
be only a single object.We can propagate multi-target beliefs
over the image network, like we demonstrated in our com-
parison to Kim and Xing [15]. Finally, the distributed nature
of our method leads itself to parallel computation, which can
be effective for large-scale collections.
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