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1. Extending convex belief propagation
The variational interpretation for approximating Gibbs marginal probabilities follows the optimization program

arg max
bi,bi,j

∑
i,j,yi,yj

bi,j(yi, yj)θi,j(yi, yj) +
∑
i,yi

bi(yi)θi(yi) +
∑
i∈V

ciH(bi) +
∑
i,j∈E

ci,jH(bi,j)aaa (1)

s.t. bi(yi), bi,j(yi, yj) ≥ 0,
∑
yi,yj

bi,j(yi, yj) = 1,
∑
yi

bi(yi) = 1,
∑
yj

bi,j(yi, yj) = bi(yi).

We denote by N(i) the set of edges that connect to node i and set H(bi) = −
∑

yi
bi(yi) log bi(yi). Whenever the edges

E compose a graph without cycles and ci,j = 1, ci = 1 − |N(i)| are the Bethe coefficients, the above variational program
results in exact inference: the optimal beliefs bi(yi) are the Gibbs marginal probabilities. For graphs with cycles this program
approximates the inference, as its optimal beliefs approximate the Gibbs marginal probabilities. Importantly, when one uses
positive entropy coefficients ci, ci,j > 0 the program is everywhere concave and have a unique global optimum. This global
optimum can be attained efficiently, e.g., by message-passing algorithms [7, 3]. In our work we consider an extension of this
program, to count for interactions across images:

Claim 1 Consider a program that augments Equation (1) with the non-linearities across images
∑

i,j∈Eb

∑
yi
bi(yi)bj(yj).

arg max
bi,bi,j

∑
(i,j)∈E,yi,yj

bi,j(yi, yj)θi,j(yi, yj) +
∑

i∈V,yi

bi(yi)θi(yi) + (2)

∑
i,j∈Eb

∑
yi

bi(yi)bj(yj) +
∑
i∈V

ciH(bi) +
∑
i,j∈E

ci,jH(bi,j)

s.t. bi(yi), bi,j(yi, yj) ≥ 0,
∑
yi,yj

bi,j(yi, yj) = 1,
∑
yi

bi(yi) = 1,
∑
yj

bi,j(yi, yj) = bi(yi).

Then this program is strictly concave if ci,j > 0 and for any i there holds ci > λmax(Eb) where Eb is the adjacency
matrix between images and λmax(Nb) is its maximal eigenvalue. Moreover, a message-passing algorithm (performing block
coordinate ascent over the beliefs of this program) is guaranteed to converge to the program’s optimum.

Proof: The concavity of the program is determined by the eigenvalues of its Hessian. A function is strictly concave if the
eigenvalues of its Hessian are negative. The Hessian of the linear terms vanishes and we do not consider it. The Hessian of
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Figure 1: Comparison to the correspondences provided by NRDC. For each template-target image pair, the reliable correspondences are
colored in either yellow (in foreground regions) or blue (in background regions). The silhouettes of our multi-target inference results are
provided in red.

BRIDE SINGER TODDLER
P J P J P J

(i) 66.6 16.2 78.2 09.1 92.0 37.6
(i)+ 68.5 19.8 77.8 11.5 93.6 47.1
(ii) 89.4 78.9 97.2 88.6 96.3 75.0
(iii) 92.2 83.0 98.4 93.8 96.9 79.9

Table 1: Evaluation of our inference approach. We break-down the performance of the different stages (numbered according to Section
2) of a single inference iteration.

the entropy function is a diagonal matrix whose entries are the minus of the inverse beliefs. Therefore the eigenvalues of the
entropy’s Hessian are at most −1. The Hessian of the mixing terms

∑
i,j∈Eb

∑
yi
bi(yi)bj(yj) is dominated by the Hessian

of Eb. This is a convex-concave function whose convex element is determined by λmax(Eb). To overcome this convexity
it is sufficient to set ci > λmax(Eb) for every i. The convergence to the global optimum follows the strict concavity and
Proposition 2.7.1 in [1].

The maximal eigenvalue of an adjacency matrix is at most its maximal degree, hence λmax(Eb) ≤ maxj |Nb(j)|. This
gives a simpler condition to guarantee convergence which does not require the maximal eigenvalue of Eb, namely for any i
with ci > maxj |Nb(j)|.

2. Evaluating our inference technique
To evaluate our inference technique, we provide both qualitative and quantitative results on the following intermediate

stages: (i) single inference from correspondences only; (ii) a complete direct template-target inference application; and (iii)
joint multi-target inference. In Table 1(a), we report the average P and J scores per dataset. These scores average over all the
images which are adjacent to a template seed, and further average over three random template seeds per dataset. To evaluate
how well the correspondences provided by NRDC capture the object in the target images, we report two different scores. The
first (indicated by (i) in Table 1(a)) considers foreground regions directly according to the foreground correspondences. The
yellow regions in Figure 1 illustrate these regions. The second (indicated by (i)+ in Table 1(a)) considers foreground regions
that are obtained after performing graph-cuts, with these regions provided for initialization.

As can be observed both in Table 1(a) and Figure 1, our technique achieves a significant improvement over the initial set
of reliable correspondences. Note that our technique is robust a to few outliers (false positives), e.g., in the right-most image
of Figure 1, and recovers the object thanks to the joint multi-target inference stage. For a more extensive assessment of our
inference technique, please refer to the interactive html files.

3. Results and comparisons on sampled video collections
In Figure 2 we provide additional qualitative results and comparisons on the first five frames from the sparse sequences

sampled from the Davis datasets [5]. See Table 1 in the paper for a quantitative evaluation on these datasets.
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Figure 2: Qualitative comparison to state-of-the-art co-segmentation techniques on the first five frames from the sparse sequences sampled
from the following Davis datasets [5]: boat, soapbox, lucia, drift-turn, rhino, stroller, kite-walk, scooter-black, parkour, motorbike. The
first frame is provided as template for the semi-supervised techniques.
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