
Spherical Embedding of Inlier Silhouette Dissimilarities

Etai Littwin, Hadar Averbuch-Elor, Daniel Cohen-Or

Tel-Aviv University

Abstract

In this paper, we introduce a spherical embedding tech-

nique to position a given set of silhouettes of an object

as observed from a set of cameras arbitrarily positioned

around the object. Our technique estimates dissimilarities

among the silhouettes and embeds them directly in the ro-

tation space SO(3). The embedding is obtained by an opti-

mization scheme applied over the rotations represented with

exponential maps. Since the measure for inter-silhouette

dissimilarities contains many outliers, our key idea is to

perform the embedding by only using a subset of the esti-

mated dissimilarities. We present a technique that carefully

screens for inlier-distances, and the pairwise scaled dissim-

ilarities are embedded in a spherical space, diffeomorphic

to SO(3). We show that our method outperforms spherical

MDS embedding, demonstrate its performance on various

multi-view sets, and highlight its robustness to outliers.

1 Introduction

We consider the following problem: given a set of silhou-

ettes of an object as observed from a set of cameras and an

estimated dissimilarity measure among them, we would like

to approximate their relative rotations and position them

on a sphere (see the illustration in Figure 1c). Similar to

previous works (e.g., [17, 8, 13]), we assume that the ob-

ject silhouettes are the only visual cues provided, and thus

traditional structure from motion (SfM) techniques based

on common feature correspondence cannot be applied suc-

cessfully. However, we do not intend to calibrate the cam-

eras from the given silhouettes. The dissimilarity measure

among the silhouettes is invariant to scaling and transla-

tion and thus we are only interested in the relative rotation

among the cameras. Hence, we embed the object’s silhou-

ettes in SO(3). Once they are embedded onto the 3D rota-

tion space, the camera positions can be easily approximated

over a sphere.

The problem we address is particularly challenging since

the similarity estimates are generally unreliable, and di-

rectly applying a multi-dimensional scaling (MDS) embed-

ding introduces a significant distortion. Hence, a robust

technique is sought, that may ignore portions of the input

data. Our technique finds and considers inlier dissimilari-

ties and ignores outlier ones, and then embeds only a subset

of the views (see the illustration in Figure 1). The mea-

sure that we employ to estimate the dissimilarities between

silhouettes, just like most similarity measures, tends to be

more reliable for more similar shapes, and completely un-

reliable for more dissimilar ones. This may suggest that by

simply ignoring large dissimilarity measures, a robust em-

bedding can possibly be obtained. However, as we shall

show, such a simple approach is not robust enough as some

short distance estimates are also erroneous and distort the

embedding on the sphere.

The technique that we present is more involved. It carefully

defines a graph, that may not necessarily contain all the in-

put silhouettes, nor all their pairwise dissimilarities. The

graph is defined by a union of small sub-sampled matrices,

each of which is verified to have a plausible embedding in

SO(3). The graph of inlier dissimilarities, as a whole, is

then embedded into the space of rotations by an optimiza-

tion that associates relative rotations with the views so that

they agree with the dissimilarities defined by the edges of

the graph. Our embedding technique employs exponen-

tial maps and solves the embedding in the rotation space

SO(3), without introducing large dissimilarities to complete

the affinity matrix. Our contribution is twofold: First, we

present a spherical embedding technique based on exponen-

tial maps, and show that it outperforms spherical MDS. Sec-

ond, we develop an inlier screening technique, and show its

robustness to erroneous silhouette dissimilarities.

The rest of the paper is organized as follows: Related works

are briefly reviewed in Section 2. We present an overview of

our method in Section 3. In Section 4, we review the topol-

ogy of the SO(3) group and the exponential maps which

we apply in our spherical embedding. We introduce our

exponential maps embedding, inlier screening techniques,

and dissimilarity measure in Sections 5, 6, and 7, respec-

tively. We then show some results and an evaluation of our

technique in Section 8 and conclude with a discussion of

limitations and future work in Section 9.



(a) (b) (c)

Figure 1: Overview of our method. Given a set of silhouettes of an object as observed from a set of cameras arbitrarily

positioned around an object, we first (a) compute the full all-pairs dissimilarities. We discover the inlier silhouette dissimi-

larities using our inlier screening technique and obtain a sparse graph (b). We then perform an optimization to embed the

sparse dissimilarities in SO(3). Assuming the contours are associated with photos, then one can place them on a sphere (c).

2 Related Work

The problem of recovering viewpoints from silhouettes is

related to the general problem of structure-from-motion. In

the general setting, both the observed structure and the cam-

era parameters are unknown [9]. A large body of research

has studied this problem and significant progress has been

made. Most methods for camera calibration, or camera

motion estimation, rely on feature correspondences. When

these correspondences are available, robust solutions, (e.g.,

[18]), allow for a simultaneous reconstruction of the cap-

tured object and the recovery of the latent camera param-

eters. Other works investigate the complementary setting,

i.e., motion and structure estimation when there are no reli-

able feature correspondences.

Extracting and matching feature points for textureless or

smooth surfaces, for instance, is impractical, and calls for a

different approach. The object silhouette is the most reliable

image feature in this setting, and many works ([7, 21, 5]),

take advantage of this available cue. However, unlike our

approach, prior work on camera calibration from silhouettes

usually relies on recovering the epipolar tangency points.

These are the silhouette points whose tangent is an epipo-

lar line. In our work, we use the object silhouettes merely

as means to provide a dissimilarity measure to estimate the

distances among the latent cameras.

Shape from silhouette techniques are based on the notion

of frontier points [14, 20], i.e., the outermost epipolar tan-

gencies, to reconstruct a static model from silhouettes of

uncalibrated cameras. Wong and Cipolla [20] assume that

at least three views are taken along a circular path and add

additional views incrementally in an optimization scheme

that is initialized by the circular motion. Hernandez et al.

[10] further generalized the approach by adding more geo-

metric constraints. Using these additional constraints, their

technique can handle partial or truncated silhouettes. More

recently, Mcilroy et al. [13] proposed a technique for the

recovery of the affine projection matrices in a more general

setting. However, their method requires a rather good ini-

tialization. Our work, in that respect, is complementary and

can provide these initial camera positions.

To recover the latent positions, Sinha et al. [17] exercise a

RANSAC-based approach by exploring the space of all pos-

sible epipole positions in a given video sequence. Thanks to

the static camera configuration, the epipolar geometry can

be verified and corrected. Furukawa et al. [8] selects sets of

frontier point candidates and rejects inconsistent matches.

They also assume that the object is captured along a sphere

and determine the rotation error. It is important to note,

however, that this method, along with the others mentioned

above, is sensitive to the accuracy and completeness of the

silhouettes. In contrast, our method uses the silhouettes

only to estimate the distance between the views and is thus

insensitive to partial, truncated or noisy silhouettes.

Generally speaking, all of these techniques are specifically

designated for solving the calibration problem from given

silhouettes, while our method can use any dissimilarity

measure between views to recover the camera rotation pa-

rameters. In that sense, our work is closer in spirit to works

that embed distances onto spherical structures. Pless and

Simon [15] extend the MDS embedding algorithm to spher-

ical manifolds. Begelfor and Werman [2] generalize their

approach to manifolds with negative curvature as well. Un-

like these spherical MDS techniques, our method recovers

the camera rotation parameters directly by applying opti-

mization in the rotation space, and thus, as we shall show,

can better handle missing pairs of distances. Furthermore,

contrary to these spherical MDS methods, the focus of our

work is handling outlier measures as common in dissimilar-

ity estimates among silhouettes.

Recently, Averbuch-Elor and Cohen-Or [1] presented a

technique that recovers the ring-ordering of casual images

that capture a temporal event. Their technique is also based

on a rough dissimilarity measure among the photos. Their

method assumes that the topology of the photos is one di-

mensional. In our work, we extend the problem to a 3D

manifold in 4D and embed the photos while considering

only inliers.



3 Overview

In this work, we develop a technique to embed dissimilar-

ities onto the space of rotations. For each view and its as-

sociated silhouette, we would like to find the rotations Ri

relative to some neutral position for each viewpoint i. Let

us denote by D(Ri,R j) the distance between viewpoints i

and j. Note that the camera can produce different views

while maintaining the same position in 3D space relative to

the object due to rotation around its own principal axis. We

assume that a significant portion of dissimilarity measures

correlate well with the actual D(Ri,R j), but we would like

to tolerate a non-trivial amount of outlier measures.

Given a set of pairwise distances di j between each pair of

viewpoints i and j, we would like to minimize the following

expression in the space of rotations:

∑
i j

(D(Ri,R j)−di j)
2.

The minimization requires the computation of its deriva-

tives with respect to Ri and R j. Since the first derivatives

are not trivial to express with the exponential maps repre-

sentation, in Section 5 we develop an explicit expression

of the first derivatives using the Baker Campbell Hausdorff

formula [4].

In Section 6, we develop a method that deals with outlier

dissimilarity measures. Figure 2 illustrates the correlation

between the ground truth rotational distances among the

views and the estimated dissimilarity among their silhou-

ettes. As can be seen, the correlation is not high, and there

is a significant amount of noise and outliers. A simple ap-

proach which selects only the k-nearest neighbors (KNN) of

each point is not robust enough, as demonstrated in Figure

2b. The red dots are the estimates associated with the KNN

of the points. Clearly, they include many outliers. Hence,

we establish a more elaborate technique that identifies in-

lier estimates that have a high correlation with the ground

truth. These inlier dissimilarities (illustrated with green dots

in Figure 2a) reside along the diagonal, and are not neces-

sarily small. The key idea is to search and sample small sub-

sampled matrices that embed well onto a hypersphere. We

create an aggregate of such sub-sampled matrices that have

significant overlap and define a graph where the nodes are

a subset of the input points and an edge is defined only for

a pair that appears in one of the matrices. We show that the

aggregate of sub-sampled matrices embeds well on the unit

sphere using our exponential maps embedding technique.

The direct optimization of our objective function in SO(3)

allows solving a rather sparse set of views, without complet-

ing large distances as needed in MDS-based techniques. In

Section 8, we show that if the dissimilarities di j are in full

correlation with the ground-truth distances D(Ri,R j) then

our method recovers the rotations accurately. We then show
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Figure 2: Inlier dissimilarities. The ground truth distances

versus the estimated dissimilarities of the BULL set. (a) The

green dots illustrate the chosen distances using our inlier

embedding technique. Note that it contains large distances

as well as small ones, all along the diagonal. (b) Selecting

inliers by KNN (the red dots) may include large errors.

the robustness of our method to erroneous dissimilarities by

adding noise to the ground truth data. Moreover, we demon-

strate the performance of our method on real data and com-

pare our inlier screening technique with one that uses KNN

distances.

4 SO(3) and Exponential Maps

Rotations in 3D space form the special orthogonal Lie group

SO(3). Being a Lie group, it is a smooth differentiable man-

ifold that can be studied using differential calculus. Among

numerous ways of representing a 3D rotation Ri, a conve-

nient one is defined by the axis of rotation (a pivot)~n and a

rotation angle θ . Given this parametrization, the topology

of the SO(3) group can be regarded as a solid ball in R3 of

radius π . More precisely, for every point in this ball there is

a 3D rotation, with an axis defined by the normalized vector

connecting the point and the ball origin, and a rotation an-

gle defined by the magnitude of the vector. Since rotations

through pi around~n and −~n represent the same rotation, we

identify antipodal points on the surface of the ball. With

this identification, we arrive at the topological space home-

omorphic to the group.

We can describe a map from this solid ball in R3 to a a

surface of a unit sphere in R4 using unit quaternions rep-

resentation: ~q = [cos( θ
2
),sin( θ

2
)~n]T . It is easy to verify that

~qT~q = 1, allowing us to identify the surface of this sphere

as a manifold diffeomorphic to the group. Since a topology

on the SO(3) Lie group can be derived from the distance

measure between its elements, using the diffeomorphism to

the 4D sphere we can compute this measure using geodesic

distances on the sphere. For more on the SO(3) group, see

[6].

Since the SO(3) has a Lie structure, the geodesics are repre-

sented using an exponential map, which is a mapping of



antisymmetric matrices to rotation matrices through ma-

trix exponentials. Given ~n and θ , the vector ~m = θ~n =
[mx,my,mz] parameterizes a rotation matrix:

Ri = e[~mi]× = eHi ,

where we use the matrix cross product notation:

[~mi]× =





0 miz −miy

−miz 0 mix

miy −mix 0



= Hi.

The geodesic distance between Ri and R j defined as:

D(Ri,R j) =
1

2
‖log(eHi e−H j)‖F , (1)

with ‖◦‖F being the Frobenius norm ‖H‖F =
√

∑i j |Hi j|2.

Note that this metric is proportional to the amount of ro-

tation required to get from one rotation to the next, and it

can be shown that it is equivalent to a geodesic distance

between two points representing Ri and R j on the 4D unit

sphere diffeomorphic to the rotations group, giving values

in the range [0, π
2
]. For more on this metric, see [11].

In order to perform efficient optimizations on SO(3), we

need to first compute derivatives which are not trivial to ex-

press. In the general case, the matrices Hi and H j do not

commute (i.e., [Hi,H j] =HiH j−H jHi 6= 0), which prohibits

the standard addition of exponents as in the scalar case (i.e.,

eHi e−H j 6= eHi−H j ). Furthermore, computing the derivatives

in simple form requires the expansion of log(eHi e−H j) into a

series using the Baker Campbell Hausdorff formula which

presents some restrictions on the input as we shall see in

Section 5.

5 Embedding with Exponential Maps

As was previously discussed, we aim at minimizing the fol-

lowing function:

∑
i j

(D(Ri,R j)−di j)
2,

where a set of pairwise distances di j are given as input.

Following the notation introduced in Section 4, the vec-

tor ~m = [mx,my,mz] = θ~n, parameterizes a rotation matrix

Ri using an exponential map, Ri = e[~mi]× = eHi , with the

distance measure between Ri and R j defined according to

Equation 1.

The non commutative nature of the rotations group does not

allow the trivial simplification of the logarithm in Equation

1. Indeed, the computation of Equation 1 and its derivatives

requires the expansion of the matrix logarithm into an in-

finite power series of its arguments. An alternative and a

more convenient way of expressing log(eHi e−H j) as an in-

finite series is by the rotations group Lie algebra terms, or

an infinite sum of nested commutators. To express Equa-

tion 1 in terms of ~mi for viewpoint i and ~m j for viewpoint j,

we use the Baker Campbell Hausdorff (BCH) formula that

states that for square matrices Hi and H j:

log(eHi e−H j) = Hi −H j −
1

2
[Hi,H j]−

1

12
[Hi, [Hi,H j]]

+
1

12
[H j, [Hi,H j]]...

where [Hi,H j] = HiH j −H jHi is the commutator between

Hi and H j.

In the case of the SO(3) group, the BCH series is decreasing

rapidly, allowing us to neglect high order terms while re-

maining relatively accurate (see [4] for more details). Tak-

ing the leading terms above we get:

D(Ri,R j)≈
1

2
‖Hi −H j −

1

2
[Hi,H j]−

1

12
[Hi, [Hi,H j]]

+
1

12
[H j, [Hi,H j]]‖F .

We can now formulate an optimization problem that is not

strictly convex in the rotation parameters ~mi, but will con-

verge to the correct solution up to a 4D rotation and a reflec-

tion regardless of the initial guess, provided that the conver-

gence criteria of the BCH formula (described at the end of

this section) is met.

We can express the following terms as:

[Hi,H j] = [~mi]×[~m j]×− [~m j]×[~mi]× = [~mi × ~m j]×,

[Hi, [Hi,H j]] = [~mi × (~mi × ~m j)]×,

[H j, [Hi,H j]] = [~m j × ~mi × ~m j]×,

and can therefore approximate Equation 1 as follows:

1

2
‖[~mi − ~m j −

1

2
~mi × ~m j −

1

12
~mi × (~mi × ~m j)

+
1

12
~m j × ~mi × ~m j]×‖F .

Let us denote with ~Vi j the expression:

~mi− ~m j −
1

2
~mi× ~m j −

1

12
~mi×(~mi× ~m j)+

1

12
~m j × ~mi× ~m j,

to obtain:

D(Ri,R j)≈
1

2
‖[~Vi j]×‖F . (2)

To express Equation 2 as an L2 norm of some vector, we

use the following equality that holds for any vector~v:

‖[~v]×‖F =
√

2‖~v‖2

Therefore:

D(Ri,R j)≈
1√
2
‖~Vi j‖2 =

√

(~Vi j
T ~Vi j)/2.



We can then define the objective function as follows:

ob j = ∑
i j

(

√

~Vi j
T ~Vi j −di j)

2. (3)

Taking its derivative with respect to ~mi yields:

∂ob j

∂ ~mi

= 2∑
i j

(

√

~Vi j
T ~Vi j −di j)





~Vi j
√

~Vi j
T ~Vi j





T
(

∂ ~Vi j

∂ ~mi

)T

.

To express
∂ ~Vi j

∂ ~mi
, we observe that:

∂ (~mi × ~m j)

∂ ~mi

= [~m j]×,

∂ (~m j × ~mi × ~m j)

∂ ~mi

= [~m j]
2
×,

∂ (~mi × (~mi × ~m j))

∂ ~mi

=−[~mi]×[~m j]×+[~m j × ~mi]×,

and thus
∂ ~Vi j

∂ ~mi
=

I − 1

2
[~m j]×+

1

12
[~m j]

2
×+

1

12
[~mi]×[~m j]×− 1

12
[~m j × ~mi]×

We can now explicitly express the derivatives
∂ob j

∂ ~mi
with re-

spect to each rotation parameters ~mi.

The above expression of the derivatives of Equation 3 re-

quires the normal convergence of the BCH series, which

has been the topic of considerable research (e.g., [4]). In

this work, we assume that our input is restricted to cases

where the convergence is guaranteed, namely in the domain

‖Hi‖ f +‖H j‖ f <
√

2π , for matrices Hi and H j. Now, since

‖Hi‖ f =
√

2θi, we can easily verify that this criteria is met

by ensuring that there exist a row or a column i in the dis-

tance matrix where each entry is smaller than π
4

and set its

corresponding rotation parameters ~mi =~0.

Finally, given a pairwise distances di j, we can optimize the

objective function (Equation 3) using standard optimization

methods such as gradient descent and get the rotation pa-

rameters ~mi for each element i.

6 Inlier Embedding

The spherical embedding presented above converges to the

correct solution provided that the pairwise similarity mea-

sures roughly agree with the amount of rotation the camera

undergoes from one view to the other. However, in prac-

tice, such a strong correlation between all the similarity es-

timates and the real corresponding distances is not likely.

Generally, the correlation tends to be stronger with short

distances, which gives rise to the filtering of large distances

and an embedding of the images only based on the short

(a) (b) (c) (d) (e)

Figure 3: An illustration of our inlier embedding technique.

The matrices illustrated in (a) and (d) are the input (es-

timated) and ground truth distance matrices, respectively.

Large differences between the two result in significant er-

rors in the embedding. (b) The obtained sub-sampled ma-

trices exhibit a much closer similarity to the ground truth,

demonstrated in (c). The output graph G is created from the

illustrated sparse matrix in (e).

distances. However, as we shall show later with some ex-

periments, the short distances are still unreliable enough to

produce adequate results (see Section 8).

Distance measures between elements in the SO(3) group

correspond to geodesic distances between points on a unit

4D hypersphere. We can therefore search through the NxN

distance matrix for N′xN′ sub-sampled matrices that can

best be embedded in a 4D spherical surface, where N′ <<
N. As we shall see, this can be done efficiently without

resorting to optimization methods. However, for large N′

it is not likely to be able to guess such a sub-sampled ma-

trix given the high amount of noise and outliers in a typical

set. If N′ is rather small, it is more probable to guess a

sub-sampled matrix that can be successfully embedded on a

hypersphere. Our approach is, therefore, to fuse many such

sub-sampled matrices to obtain one large coherent embed-

ding. The selection of these sub-sampled matrices is the

inlier screening process.

Although the union of the embedded points is large, it does

not necessarily contain its all-pairs distances, but rather only

those that can jointly be embedded. Therefore, an embed-

ding technique which takes as input a set of pairwise dis-

tances, such as the one described in the previous section,

is needed to perform the coherent embedding. The goal of

the screening scheme is, thus, to discover those meaningful

(inlier) pairwise distances to be used by the optimization

technique. From a full, but noisy, distance matrix (see the

illustration in Figure 3d), we seek to obtain a sparse, yet

meaningful, inliers distance matrix (such as the one illus-

trated in Figure 3e).

Given an N ×N distance matrix (or a sub-sampled matrix)

M , we would like to measure how well it can be embed-

ded on a unit 4D hypersphere. The geodesic distances be-



tween points on the hypersphere correspond to the inverse

cosine of the scalar product between the corresponding vec-

tors. Thus, by performing eigenvalue decomposition on the

cosine of M and evaluating its fifth eigenvalue, we can ex-

amine whether we can obtain a meaningful embedding in a

4D spherical space. Denote by λ1...λN the eigenvalues of

cos(M) in descending order, then:

E = λ5.

E measures how well the matrix M can be embedded in a

4D spherical space. A sub-sampled matrix associated with

a small E is then considered to consist of inlier distances.

Furthermore, to avoid degenerate solutions, we only con-

sider matrices with an L1 norm, normalized according to

the matrix size, above a threshold T . All our results were

obtained with T = 0.4.

Clearly, N′ must be larger than four in order for the embed-

ding to be non-trivial. The smaller N′ is, the more likely

it is to find a sub-sampled matrix of size N′ ×N′ that can

be embedded on a hypersphere while yielding a small er-

ror E. Conversely, for large N′ it is less likely to find a

sub-sampled matrix that can have a plausible embedding on

the hypersphere. For efficiency reasons, we prefer to fuse

large sub-sampled matrices. In practice, we found that us-

ing N′ = 10 produces plausible results. To find a 10× 10

sub-sampled matrix with a small E we use a RANSAC-

based approach where we sample thousands of 10×10 sub-

sampled matrices, compute their E values, and consider

only those with a small E. Denote by Q the union of sub-

sampled matrices Qi that yield a small E.

We then need to generate a larger embedding by fusing to-

gether a proper subset Q̂ of Q. The fusion of Q̂ forms a

graph, where the nodes are the union of all points in Q̂, and

the edges are the given distances between the points. More

precisely, a pair of nodes is connected by an edge only if

there exists a sub-sampled matrix Qi in Q̂ where both nodes

are present. To get a proper embedding, the graph must

be connected, or even strongly connected. To this end, the

graph is required to have a min-cut of at least five edges.

We build the graph G incrementally by taking sub-sampled

matrices one by one and augmenting the graph progres-

sively. The initial graph is constructed from the sub-

sampled matrix with the smallest E value. In each step,

we augment G with an additional inlier sub-sampled ma-

trix and ensure that it has at least four overlapping points

with the points selected so far. We continue until G is suf-

ficiently large or until all the valid sub-sampled matrices in

Q are picked. Figure 3 illustrates the entries in the NxN dis-

tance matrix that can jointly be embedded on a hypersphere

using our technique. All the sub-sampled matrices in Q̂ are

illustrated in Figure 3b. Lastly, the sparse matrix in Figure

3e consists of the union of the inlier distances, and these

define the edges of the graph G.

Figure 4: Contour Dissimilarity Measure. The black lines

connecting the blue and pink contours connect between sim-

ilar points along the contours. The average spatial distance

is then computed and later scaled accordingly. The com-

puted distance between the two shapes illustrated above is

20.6◦, and the true geodesic distance is in fact 23.5◦.

Dataset Inlier KNN

Name #img avg max #img avg max

BULL 160 4.3 7.2 40 5.9 15.2
HORSE 80 5.2 13.6 40 6.5 20.3
AIRPLANE 80 8.3 15.6 20 16.5 29.9
CAMEL 80 6.8 12.3 35 12.5 22.8
DOG 80 6.1 14.6 40 15.8 27.4
LADY 60 7.6 17.3 30 13.2 22.1

Table 1: Inlier vs. KNN Screening. The errors (measured

in degrees) obtained on each of our datasets. For our inlier

embedding technique, the number of embedded images is

displayed alongside the errors.

7 Contour Dissimilarity Measure

Our algorithm requires a dissimilarity measure that relates

to the geodesic distance between the camera positions, so

that images captured from similar viewpoints induce small

distances. Since we aim at recovering the rotation parame-

ters at SO(3), the measure must be rotation-variant. More

precisely, if two images were captured from the same posi-

tion but contain a rotation between them, we would like the

algorithm to recover this rotation as well.

First, we normalize each outer-contour by translating its

center of mass to the origin and scaling it so that each con-

tour has a unit average distance to the origin. We then sam-

ple and match the normalized contours, namely c1 and c2,

using the inner-distance shape context method [12]. This

technique extends shape context [3] by replacing Euclidean

distances with inner-distances. It computes descriptors for

each sampled point on the contours. We compute the av-

erage spatial distance between a point on c1 and its most

similar point (in descriptor space) on c2. Finally, we nor-

malize the dissimilarity measures so that the greatest value

is exactly π
2

, assuming that there is a pair of views that are
π
2

apart. See Figure 4 for an illustration of the distance be-

tween two input shapes.
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Figure 5: Exponential Maps vs. Spherical MDS. (a) Com-

paring the errors obtained using exponential maps (green)

and MDS (red) as a function of the noise. (c)-(d) The points

illustrate the ground-truth locations (blue) versus the com-

puted ones (red or green) in one test case when the noise

added has a standard deviation of 6◦. (b) The average er-

ror obtained when only a subset of the pairwise distances

is given as input. The x-axis corresponds to the number of

nearest neighbors for which the distances are provided (out

of a full matrix of size 35×35).

0 π/8 π/4 3π/8 π/2
0

π/8

π/4

3π/8

π/2

Estimated distances

G
ro

u
n

d
 t

ru
th

 d
is

ta
n

c
e

s

(a)

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Number of distances

A
v
g

 E
rr

o
r

(b)

Figure 6: Inlier vs. KNN Screening. Embedding a subset

from our HORSE set. (a) The inlier distances chosen using

our inlier embedding technique (green) and the distances

chosen using KNN (red). (b) Evaluating the validity of the

distances chosen by both techniques by examining the av-

erage distance from the diagonal in (a) as a function of the

number of distances chosen for the embedding.

8 Evaluation

To analyze the performance of our method we performed

quantitative and qualitative evaluations. To measure the

performance quantitatively we need ground truth camera

positions. Thus, we generated six datasets, which contain

multiple rendered images of an input model from various

viewpoints. We also experimented on real photographs of a

physical object, and assessed the resulting embedding qual-

itatively.

To better quantify the performance of our method and in or-

der to compare our results to an alternative technique, we

performed Monte-carlo experiments on N virtual camera

positions distributed randomly across a hemisphere. We

examined how well our method performs under increas-

ing levels of noise and outliers. For these experiments, we

considered the geodesic pairwise distances instead of the

contour-based ones. In what follows, we elaborate on each

of these experiments.

Exponential Maps vs. Spherical MDS To evaluate the

performance of our embedding technique, we examined its

robustness to noise and outliers. Furthermore, we compared

the results to those obtained by an MDS embedding on a

4D unit sphere (similar to the approach of [15] and [2]).

Since the alternate technique provides a point in 4D, to ob-

tain the rotation parameters, we interpreted each point as a

unit quaternion.

First, we examined both embeddings when all the camera

orientations, and therefore, all the pairwise distances, are

provided as input. Note that while the location on the 3D

sphere does not reveal the difference in its rotation around

its own look-at axis, the computed distance between the ro-

tations of the embedding and ground truth for each point

does reveal the overall accuracy in orientation. Figure 5a

demonstrates the average error as the noise level increases.

At each noise level, we generated multiple input orienta-

tions and added Gaussian-distributed noise with a varying

standard deviation to the full distance matrix. Recall that

our method is inherently an approximation, as we consider

only the leading terms of the infinite sum. Thus, our method

is not completely accurate when the distances are exact.

However, as the noise level increases, the advantage of our

method over spherical MDS is clearly evident.

We also examined our approach when only a subset of the

distances, the k-nearest neighbors (K = 10), is provided.

Since MDS assumes that all the pairwise distances are pro-

vided, we estimated the missing distances with Isomaps, as

suggested also by [2]. Figure 5b illustrates the average error

obtained by both techniques as a function of K.

Inlier vs. KNN Screening We performed a quantita-

tive comparison to demonstrate the advantage of our in-

lier screening versus a KNN screening. In both cases, the

data is embedded with our exponential maps embedding.

In a KNN screening, we use only the distances between all

points and their k-nearest neighbors. In order to demon-

strate the quality of our chosen subsets, we measured the
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Figure 7: Four randomly selected views and their rotational errors, belonging our PLANE,HORSE, and LADY datasets.

Illustrated above are the input silhouettes together with the ground-truth silhouettes generated from the specified rotations.
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Figure 8: Experiments on Real Photographs. A reference image (in red) and the distances between the embedded points,

measured in degrees, of the remaining set images demonstrated above for the DINOSAUR set (top) and the GIRL set (bottom).

average offset (of all the distances chosen) from the diago-

nal as a function of the number of the chosen distances (see

Figure 6b). Table 1 demonstrates the average and the max

error for a number of datasets. Note that the advantage of

the inlier screening is consistent in all cases.

Experiments We generated a number of datasets of vary-

ing sizes and examined the results obtained by our algo-

rithm. Table 1 summarizes the input set sizes, the number

of embedded images, and the average and max errors for

each of the sets. To visually assess the typical quality of

the results, we selected a random subset per set and dis-

played the input silhouettes together with the ground-truth

silhouettes generated from the specified rotations (see Fig-

ure 7 and more results in the Supplementary Material). To-

gether with each pair, we display the rotational error be-

tween them, measured in degrees. Note that since the out-

put of our algorithm is the relative rotation associated with

each viewpoint, we used Kabsch’s algorithm to obtain the

optimal alignment between the algorithm’s output and the

ground truth.

We also qualitatively examined the results of our algorithm

on real photos. Figure 8 illustrates the results obtained on

the publicly available DINOSAUR set [19], and our GIRL

set. The contours were extracted using the GrabCut method

[16]. In each row, the leftmost image is the reference image.

The approximated relative rotation to the reference image is

displayed below the other images. As the figure demon-

strates, the results are qualitatively plausible.

9 Summary and Future Work

In this work, we presented a robust technique to embed dis-

similarities to space of rotations. The key is to perform an

inlier screening process prior to the embedding. We then

embedded the points with an optimization scheme that is

applied directly over the rotations, represented with expo-

nential maps.

We compared our embedding method to spherical MDS.

Our evaluation confirms that under noise or given only a

partial distance matrix, our method outperforms the alter-

natives. We examined our technique on various sets and

were able to recover a subset of the dissimilarities almost

faultlessly. Nevertheless, a noisy and erroneous dissimilar-

ity matrix will ultimately yield a distorted embedding. In

that respect, our method relies on a having a significant set

of inliers, or a large enough set of dissimilarity estimates

that correlate with the rotational distances. Moreover, our

method provides only an approximation to the camera po-

sitions, one that can provide a good initial guess for camera

calibration techniques which typically require a warm start.

In the future, we would like to explore other measures of

dissimilarities among views. We would also like to try to

embed the subset of cameras that were screened out. The

idea is to rely on the inlier embedding to carve out an ap-

proximated 3D shape. Then, by projecting the carved model

back to the sphere, we hope to identify the peculiar silhou-

ettes that were associated with the outliers. We also believe

that our inlier embedding technique can be beneficial for

various applications which require MDS embedding, not

necessarily on a sphere. In general, we believe that ro-

bust techniques that eliminate outliers explicitly are becom-

ing increasingly important in computer vision applications

where dissimilarity estimations are necessarily used.
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